Spaces:
Running
Running
File size: 83,804 Bytes
4470362 c9c46e8 49f9560 4470362 014af55 1f90f18 4470362 a2b08bf 4470362 62e1e3e 4470362 572db54 62e1e3e 4470362 c9c46e8 4470362 c9c46e8 49f9560 c9c46e8 4470362 c9c46e8 4470362 c9c46e8 49f9560 c9c46e8 4470362 c9c46e8 4470362 c9c46e8 4470362 c9c46e8 4470362 c9c46e8 4470362 c9c46e8 4470362 c9c46e8 4470362 c9c46e8 4470362 c9c46e8 4470362 c9c46e8 49f9560 c9c46e8 a31539c c9c46e8 49f9560 c9c46e8 49f9560 c9c46e8 a2b08bf c9c46e8 a2b08bf c9c46e8 a2b08bf c9c46e8 a2b08bf c9c46e8 a2b08bf c9c46e8 a2b08bf c9c46e8 a2b08bf 49f9560 c9c46e8 a2b08bf c9c46e8 49f9560 c9c46e8 a2b08bf 49f9560 c9c46e8 a2b08bf c9c46e8 a2b08bf c9c46e8 a2b08bf c9c46e8 014af55 c9c46e8 014af55 c9c46e8 a2b08bf 014af55 a2b08bf 014af55 a2b08bf 014af55 49f9560 014af55 49f9560 4470362 c9c46e8 4470362 c9c46e8 c72916b 043da85 c72916b 043da85 4470362 043da85 4470362 043da85 c72916b 043da85 4470362 c72916b 043da85 4470362 043da85 a10fc7c c72916b 043da85 4470362 043da85 4470362 043da85 00831ad 4470362 043da85 4470362 a10fc7c 4470362 043da85 c897c01 043da85 4470362 043da85 4470362 043da85 4470362 043da85 4470362 043da85 4470362 043da85 4470362 043da85 4470362 043da85 4470362 043da85 4470362 043da85 4470362 043da85 4470362 043da85 014af55 62e1e3e ee767b6 62e1e3e ee767b6 014af55 62e1e3e ee767b6 014af55 1f90f18 014af55 1f90f18 014af55 043da85 4470362 043da85 4470362 043da85 4470362 043da85 4470362 043da85 4470362 043da85 a10fc7c 4470362 a10fc7c 043da85 4470362 043da85 c72916b 043da85 4470362 043da85 4470362 043da85 4470362 043da85 c72916b 043da85 4470362 043da85 c72916b 043da85 014af55 c72916b 4470362 014af55 043da85 014af55 00831ad 4470362 014af55 c9c46e8 014af55 1f90f18 014af55 1f90f18 014af55 1f90f18 014af55 1f90f18 014af55 1f90f18 014af55 043da85 014af55 16d2a6f 014af55 043da85 4470362 014af55 16d2a6f 014af55 043da85 014af55 c9c46e8 014af55 043da85 4470362 014af55 043da85 014af55 043da85 014af55 043da85 014af55 043da85 014af55 043da85 4470362 014af55 043da85 014af55 043da85 014af55 043da85 014af55 043da85 014af55 043da85 014af55 043da85 014af55 043da85 014af55 1f90f18 014af55 1f90f18 014af55 16d2a6f 4470362 a10fc7c 014af55 63bbff6 c9c46e8 63bbff6 014af55 63bbff6 014af55 63bbff6 014af55 a2b08bf 014af55 63bbff6 014af55 63bbff6 014af55 63bbff6 014af55 a2b08bf 014af55 c9c46e8 014af55 63bbff6 014af55 63bbff6 014af55 a2b08bf 014af55 a2b08bf 63bbff6 014af55 63bbff6 014af55 c9c46e8 014af55 63bbff6 014af55 63bbff6 014af55 4470362 63bbff6 a2b08bf 4470362 c9c46e8 a2b08bf 63bbff6 a2b08bf 63bbff6 c9c46e8 63bbff6 a2b08bf c9c46e8 63bbff6 a2b08bf 4470362 a2b08bf 4470362 a2b08bf 5b04b46 c9c46e8 63bbff6 a2b08bf c9c46e8 63bbff6 a2b08bf 4470362 c9c46e8 4470362 a2b08bf 63bbff6 a2b08bf 63bbff6 a2b08bf c9c46e8 63bbff6 a2b08bf c9c46e8 63bbff6 c9c46e8 a2b08bf 4470362 63bbff6 a2b08bf 4470362 a2b08bf 4470362 a2b08bf 4470362 a2b08bf 4470362 a2b08bf 4470362 a2b08bf 4470362 a2b08bf 4470362 a2b08bf 4470362 a2b08bf 4470362 a2b08bf 4470362 a2b08bf 4470362 a2b08bf 4470362 a2b08bf 1f90f18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 |
# src/ui_components_original.py
import gradio as gr
import os
import re
import logging
import base64
from datetime import datetime
from PIL import Image
import html
from typing import Optional, Dict, Any
import numpy as np
import cv2
import tempfile
# ---- Safe imports for local vs package execution ----
try:
from .patient_history import PatientHistoryManager, ReportGenerator
except Exception:
from patient_history import PatientHistoryManager, ReportGenerator # local dev
# ---- Optional spaces.GPU fallback (local dev) ----
try:
import spaces
def _SPACES_GPU(*args, **kwargs):
return spaces.GPU(*args, **kwargs)
except Exception:
def _SPACES_GPU(*_args, **_kwargs):
def deco(f):
return f
return deco
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
def pil_to_base64(pil_image: Image.Image) -> Optional[str]:
"""Convert PIL Image to base64 data URL"""
import io
if pil_image is None:
return None
try:
if pil_image.mode != 'RGB':
pil_image = pil_image.convert('RGB')
buffer = io.BytesIO()
pil_image.save(buffer, format='PNG')
img_str = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
except Exception as e:
logging.error(f"Error converting PIL image to base64: {e}")
return None
# =============================================================================
# GPU-DECORATED FUNCTION (STANDALONE)
# =============================================================================
@_SPACES_GPU(enable_queue=True)
def standalone_run_analysis(
# instance/context
ui_instance,
current_user: Dict[str, Any],
database_manager,
wound_analyzer,
# UI inputs
mode, existing_label,
np_name, np_age, np_gender,
w_loc, w_dur, pain, moist, infect, diabetic,
prev_tx, med_hist, meds, alls, notes, img_path
, seg_adjust=0.0, manual_mask=None
):
"""Runs in the ZeroGPU worker; returns HTML for the UI."""
def _label_to_id(label: str):
if not label:
return None
try:
return int(str(label).split("β’", 1)[0].strip())
except Exception:
return None
def _fetch_patient_core(pid: int):
row = database_manager.execute_query_one(
"SELECT id, name, age, gender FROM patients WHERE id=%s LIMIT 1", (pid,)
)
return row or {}
def _response_to_patient_id(resp_ref):
if isinstance(resp_ref, dict):
pid = resp_ref.get("patient_id")
if pid is not None:
try:
return int(pid)
except Exception:
pass
resp_id = resp_ref.get("response_id") or resp_ref.get("id")
else:
resp_id = resp_ref
if not resp_id:
return None
row = database_manager.execute_query_one(
"SELECT patient_id FROM questionnaire_responses WHERE id=%s LIMIT 1",
(int(resp_id),)
)
try:
return int(row["patient_id"]) if row and "patient_id" in row else None
except Exception:
return None
try:
if not img_path:
return "<div class='status-error'>β Please upload a wound image.</div>"
user_id = int(current_user.get("id", 0) or 0)
if not user_id:
return "<div class='status-error'>β Please login first.</div>"
# Resolve patient
if mode == "Existing patient":
pid = _label_to_id(existing_label)
if not pid:
return "<div class='status-warning'>β οΈ Select an existing patient.</div>"
pcore = _fetch_patient_core(pid)
patient_name_v = pcore.get("name")
patient_age_v = pcore.get("age")
patient_gender_v = pcore.get("gender")
else:
patient_name_v = np_name
patient_age_v = np_age
patient_gender_v = np_gender
# Save questionnaire
q_payload = {
'user_id': user_id,
'patient_name': patient_name_v,
'patient_age': patient_age_v,
'patient_gender': patient_gender_v,
'wound_location': w_loc,
'wound_duration': w_dur,
'pain_level': pain,
'moisture_level': moist,
'infection_signs': infect,
'diabetic_status': diabetic,
'previous_treatment': prev_tx,
'medical_history': med_hist,
'medications': meds,
'allergies': alls,
'additional_notes': notes
}
response_id = database_manager.save_questionnaire(q_payload)
# normalize
response_id = (response_id.get("response_id") if isinstance(response_id, dict) else response_id)
try:
response_id = int(response_id)
except Exception:
return "<div class='status-error'>β Could not resolve response ID.</div>"
patient_id = _response_to_patient_id(response_id)
if not patient_id:
return "<div class='status-error'>β Could not resolve patient ID.</div>"
# Save wound image binary
try:
with Image.open(img_path) as pil:
pil = pil.convert("RGB")
img_meta = database_manager.save_wound_image(patient_id, pil)
image_db_id = img_meta["id"] if img_meta else None
except Exception as e:
logging.error(f"save_wound_image error: {e}")
image_db_id = None
# Prepare AI inputs
q_for_ai = {
'age': patient_age_v,
'diabetic': 'Yes' if diabetic != 'Non-diabetic' else 'No',
'allergies': alls,
'date_of_injury': 'Unknown',
'professional_care': 'Yes',
'oozing_bleeding': 'Minor Oozing' if infect != 'None' else 'None',
'infection': 'Yes' if infect != 'None' else 'No',
'moisture': moist,
'patient_name': patient_name_v,
'patient_gender': patient_gender_v,
'wound_location': w_loc,
'wound_duration': w_dur,
'pain_level': pain,
'previous_treatment': prev_tx,
'medical_history': med_hist,
'medications': meds,
'additional_notes': notes
}
# Run AI with optional segmentation adjustment and manual mask
analysis_result = wound_analyzer.analyze_wound(
img_path,
q_for_ai,
seg_adjust=seg_adjust or 0.0,
manual_mask_path=manual_mask if manual_mask else None
)
if not analysis_result or not analysis_result.get("success"):
err = (analysis_result or {}).get("error", "Unknown analysis error")
return f"<div class='status-error'>β AI Analysis failed: {html.escape(str(err))}</div>"
# Persist AI analysis
try:
database_manager.save_analysis(response_id, image_db_id, analysis_result)
except Exception as e:
logging.error(f"save_analysis error: {e}")
# Format via instance method to keep UI consistent
return ui_instance._format_comprehensive_analysis_results(
analysis_result, img_path, q_for_ai
)
except Exception as e:
logging.exception("standalone_run_analysis exception")
return f"<div class='status-error'>β System error in GPU worker: {html.escape(str(e))}</div>"
# =============================================================================
# UI CLASS DEFINITION
# =============================================================================
class UIComponents:
def __init__(self, auth_manager, database_manager, wound_analyzer):
self.auth_manager = auth_manager
self.database_manager = database_manager
self.wound_analyzer = wound_analyzer
self.current_user = {}
self.patient_history_manager = PatientHistoryManager(database_manager)
self.report_generator = ReportGenerator()
# Ensure uploads directory exists
if not os.path.exists("uploads"):
os.makedirs("uploads", exist_ok=True)
def image_to_base64(self, image_path):
"""Convert image to base64 data URL for embedding in HTML"""
if not image_path or not os.path.exists(image_path):
return None
try:
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
image_ext = os.path.splitext(image_path)[1].lower()
if image_ext in [".jpg", ".jpeg"]:
mime_type = "image/jpeg"
elif image_ext == ".png":
mime_type = "image/png"
elif image_ext == ".gif":
mime_type = "image/gif"
else:
mime_type = "image/png"
return f"data:{mime_type};base64,{encoded_string}"
except Exception as e:
logging.error(f"Error converting image to base64: {e}")
return None
def markdown_to_html(self, markdown_text):
"""Convert markdown text to proper HTML format with enhanced support"""
if not markdown_text:
return ""
# Escape HTML entities
html_text = html.escape(markdown_text)
# Headers
html_text = re.sub(r"^### (.*?)$", r"<h3>\1</h3>", html_text, flags=re.MULTILINE)
html_text = re.sub(r"^## (.*?)$", r"<h2>\1</h2>", html_text, flags=re.MULTILINE)
html_text = re.sub(r"^# (.*?)$", r"<h1>\1</h1>", html_text, flags=re.MULTILINE)
# Bold, italic
html_text = re.sub(r"\*\*(.*?)\*\*", r"<strong>\1</strong>", html_text)
html_text = re.sub(r"\*(.*?)\*", r"<em>\1</em>", html_text)
# Code blocks
html_text = re.sub(r"```(.*?)```", r"<pre><code>\1</code></pre>", html_text, flags=re.DOTALL)
# Inline code
html_text = re.sub(r"`(.*?)`", r"<code>\1</code>", html_text)
# Blockquotes
html_text = re.sub(r"^> (.*?)$", r"<blockquote>\1</blockquote>", html_text, flags=re.MULTILINE)
# Links
html_text = re.sub(r"\[(.*?)\]\((.*?)\)", r"<a href=\"\2\">\1</a>", html_text)
# Horizontal rules
html_text = re.sub(r"^\s*[-*_]{3,}\s*$", r"<hr>", html_text, flags=re.MULTILINE)
# Bullet points to <ul>
lines = html_text.split("\n")
in_list = False
result_lines = []
for line in lines:
stripped = line.strip()
if stripped.startswith("- "):
if not in_list:
result_lines.append("<ul>")
in_list = True
result_lines.append(f"<li>{stripped[2:]}</li>")
else:
if in_list:
result_lines.append("</ul>")
in_list = False
if stripped:
result_lines.append(f"<p>{stripped}</p>")
else:
result_lines.append("<br>")
if in_list:
result_lines.append("</ul>")
return "\n".join(result_lines)
def get_organizations_dropdown(self):
"""Get list of organizations for dropdown"""
try:
organizations = self.database_manager.get_organizations()
return [f"{org['org_name']} - {org['location']}" for org in organizations]
except Exception as e:
logging.error(f"Error getting organizations: {e}")
return ["Default Hospital - Location"]
def get_custom_css(self):
return """
/* =================== SMARTHEAL CSS =================== */
/* Global Styling */
body, html {
margin: 0 !important;
padding: 0 !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', sans-serif !important;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%) !important;
color: #1A202C !important;
line-height: 1.6 !important;
}
/* Professional Header with Logo */
.medical-header {
background: linear-gradient(135deg, #3182ce 0%, #2c5aa0 100%) !important;
color: white !important;
padding: 32px 40px !important;
border-radius: 20px 20px 0 0 !important;
display: flex !important;
align-items: center !important;
justify-content: center !important;
margin-bottom: 0 !important;
box-shadow: 0 10px 40px rgba(49, 130, 206, 0.3) !important;
border: none !important;
position: relative !important;
overflow: hidden !important;
}
.logo {
width: 80px !important;
height: 80px !important;
border-radius: 50% !important;
margin-right: 24px !important;
border: 4px solid rgba(255, 255, 255, 0.3) !important;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.2) !important;
background: white !important;
padding: 4px !important;
}
.medical-header h1 {
font-size: 3.5rem !important;
font-weight: 800 !important;
margin: 0 !important;
text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.3) !important;
background: linear-gradient(45deg, #ffffff, #f8f9fa) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
filter: drop-shadow(2px 2px 4px rgba(0, 0, 0, 0.3)) !important;
}
.medical-header p {
font-size: 1.3rem !important;
margin: 8px 0 0 0 !important;
opacity: 0.95 !important;
font-weight: 500 !important;
text-shadow: 1px 1px 4px rgba(0, 0, 0, 0.2) !important;
}
/* Enhanced Form Styling */
.gr-form {
background: linear-gradient(145deg, #ffffff 0%, #f8f9fa 100%) !important;
border-radius: 20px !important;
padding: 32px !important;
margin: 24px 0 !important;
box-shadow: 0 16px 48px rgba(0, 0, 0, 0.1) !important;
border: 1px solid rgba(229, 62, 62, 0.1) !important;
backdrop-filter: blur(10px) !important;
position: relative !important;
overflow: hidden !important;
}
/* Professional Input Fields */
.gr-textbox, .gr-number {
border-radius: 12px !important;
border: 2px solid #E2E8F0 !important;
background: #FFFFFF !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05) !important;
font-size: 1rem !important;
color: #1A202C !important;
padding: 16px 20px !important;
}
.gr-textbox:focus, .gr-number:focus, .gr-textbox input:focus, .gr-number input:focus {
border-color: #E53E3E !important;
box-shadow: 0 0 0 4px rgba(229, 62, 62, 0.1) !important;
background: #FFFFFF !important;
outline: none !important;
transform: translateY(-1px) !important;
}
/* Enhanced Button Styling */
button.gr-button, button.gr-button-primary {
background: linear-gradient(135deg, #E53E3E 0%, #C53030 100%) !important;
color: #FFFFFF !important;
border: none !important;
border-radius: 12px !important;
font-weight: 700 !important;
padding: 16px 32px !important;
font-size: 1.1rem !important;
letter-spacing: 0.5px !important;
text-align: center !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
box-shadow: 0 4px 16px rgba(229, 62, 62, 0.3) !important;
position: relative !important;
overflow: hidden !important;
text-transform: uppercase !important;
cursor: pointer !important;
}
button.gr-button:hover, button.gr-button-primary:hover {
background: linear-gradient(135deg, #C53030 0%, #9C2A2A 100%) !important;
box-shadow: 0 8px 32px rgba(229, 62, 62, 0.4) !important;
transform: translateY(-3px) !important;
}
/* Professional Status Messages */
.status-success {
background: linear-gradient(135deg, #F0FFF4 0%, #E6FFFA 100%) !important;
border: 2px solid #38A169 !important;
color: #22543D !important;
padding: 20px 24px !important;
border-radius: 16px !important;
font-weight: 600 !important;
margin: 16px 0 !important;
box-shadow: 0 8px 24px rgba(56, 161, 105, 0.2) !important;
backdrop-filter: blur(10px) !important;
}
.status-error {
background: linear-gradient(135deg, #FFF5F5 0%, #FED7D7 100%) !important;
border: 2px solid #E53E3E !important;
color: #742A2A !important;
padding: 20px 24px !important;
border-radius: 16px !important;
font-weight: 600 !important;
margin: 16px 0 !important;
box-shadow: 0 8px 24px rgba(229, 62, 62, 0.2) !important;
backdrop-filter: blur(10px) !important;
}
.status-warning {
background: linear-gradient(135deg, #FFFBEB 0%, #FEF3C7 100%) !important;
border: 2px solid #F59E0B !important;
color: #92400E !important;
padding: 20px 24px !important;
border-radius: 16px !important;
font-weight: 600 !important;
margin: 16px 0 !important;
box-shadow: 0 8px 24px rgba(245, 158, 11, 0.2) !important;
backdrop-filter: blur(10px) !important;
}
/* Image Gallery */
.image-gallery {
display: grid !important;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)) !important;
gap: 20px !important;
margin: 20px 0 !important;
}
.image-item {
background: white !important;
border-radius: 16px !important;
padding: 20px !important;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1) !important;
transition: transform 0.3s ease !important;
}
.image-item:hover {
transform: translateY(-5px) !important;
box-shadow: 0 16px 48px rgba(0, 0, 0, 0.15) !important;
}
.image-item img {
width: 100% !important;
height: auto !important;
border-radius: 12px !important;
margin-bottom: 12px !important;
}
.image-item h4 {
color: #2D3748 !important;
margin: 0 0 8px 0 !important;
font-size: 1.2rem !important;
font-weight: 700 !important;
}
.image-item p {
color: #4A5568 !important;
margin: 0 !important;
font-size: 0.95rem !important;
line-height: 1.5 !important;
}
/* Responsive */
@media (max-width: 768px) {
.medical-header { padding: 16px !important; text-align: center !important; }
.medical-header h1 { font-size: 2rem !important; }
.logo { width: 48px !important; height: 48px !important; margin-right: 16px !important; }
.gr-form { padding: 16px !important; margin: 8px 0 !important; }
.image-gallery { grid-template-columns: 1fr; }
}
"""
def create_interface(self):
"""
SmartHeal UI β aligned with current DB + history manager:
β’ Login (practitioner / organization)
β’ Practitioner: Wound Analysis (existing vs new patient), Patient History, View Details
"""
import gradio as gr
from PIL import Image
import os, html, logging
# ----------------------- helpers (inner) -----------------------
self._patient_choices = [] # list[str] labels in dropdown
self._patient_map = {} # label -> patient_id
def _to_data_url_if_local(path_or_url: str) -> str:
if not path_or_url:
return ""
try:
if os.path.exists(path_or_url):
return self.image_to_base64(path_or_url) or ""
return path_or_url
except Exception:
return ""
def _refresh_patient_dropdown(user_id: int):
"""Query patient's list and prepare dropdown choices."""
self._patient_choices.clear()
self._patient_map.clear()
try:
rows = self.patient_history_manager.get_patient_list(user_id) or []
for r in rows:
pid = int(r.get("id") or 0)
nm = r.get("patient_name") or "Unknown"
age = r.get("patient_age") or ""
gen = r.get("patient_gender") or ""
v = int(r.get("total_visits") or 0)
label = f"{pid} β’ {nm} ({age}y {gen}) β visits: {v}"
self._patient_choices.append(label)
self._patient_map[label] = pid
except Exception as e:
logging.error(f"refresh dropdown error: {e}")
def _label_to_id(label: str):
if not label:
return None
try:
return int(str(label).split("β’", 1)[0].strip())
except Exception:
return None
def _resolve_org_id_from_dropdown(label: str) -> Optional[int]:
"""
Dropdown items look like: 'Org Name - Location'.
Try to resolve to organizations.id.
"""
if not label:
return None
try:
if " - " in label:
org_name, location = label.split(" - ", 1)
row = self.database_manager.execute_query_one(
"SELECT id FROM organizations WHERE name=%s AND location=%s ORDER BY id DESC LIMIT 1",
(org_name.strip(), location.strip())
)
if row and "id" in row:
return int(row["id"])
else:
row = self.database_manager.execute_query_one(
"SELECT id FROM organizations WHERE name=%s ORDER BY id DESC LIMIT 1",
(label.strip(),)
)
if row and "id" in row:
return int(row["id"])
except Exception as e:
logging.error(f"resolve org id error: {e}")
return None
# ----------------------- Blocks UI -----------------------
with gr.Blocks(css=self.get_custom_css(), title="SmartHeal - AI Wound Care Assistant") as app:
# Header
logo_url = "https://scontent.fccu31-2.fna.fbcdn.net/v/t39.30808-6/275933824_102121829111657_3325198727201325354_n.jpg?_nc_cat=104&ccb=1-7&_nc_sid=6ee11a&_nc_ohc=5F0FMH9ni8QQ7kNvwHM_7v-&_nc_oc=AdnDo4fj3kdh7ShWq75N3ZEXKuGjbAu9-xZpx6bd82Vo4w0y6D-iHL64ETyW4lWod7s&_nc_zt=23&_nc_ht=scontent.fccu31-2.fna&_nc_gid=a4EiY054p4ChBMLqHCkaIA&oh=00_AfVn-aHeCy95qNhA--DhvjkWp6qdzowKpPRyJ8jevATOmQ&oe=68B1CF4B"
gr.HTML(f"""
<div class="medical-header">
<img src="{logo_url}" class="logo" alt="SmartHeal Logo">
<div>
<h1>SmartHeal AI</h1>
<p>Advanced Wound Care Analysis & Clinical Support System</p>
</div>
</div>
""")
# Disclaimer
gr.HTML("""
<div style="border:2px solid #FF6B6B;background:#FFE5E5;padding:15px;border-radius:12px;margin:10px 0;">
<h3 style="color:#D63031;margin:0 0 8px 0;">β οΈ IMPORTANT DISCLAIMER</h3>
<p><strong>This system is for testing/education and not a substitute for clinical judgment.</strong></p>
</div>
""")
# Panels: auth vs practitioner vs organization
with gr.Row():
with gr.Column(visible=True) as auth_panel:
with gr.Tabs():
with gr.Tab("π Professional Login"):
login_username = gr.Textbox(label="π€ Username")
login_password = gr.Textbox(label="π Password", type="password")
login_btn = gr.Button("π Sign In", variant="primary")
login_status = gr.HTML("<div class='status-warning'>Please sign in.</div>")
with gr.Tab("π New Registration"):
signup_username = gr.Textbox(label="π€ Username")
signup_email = gr.Textbox(label="π§ Email")
signup_password = gr.Textbox(label="π Password", type="password")
signup_name = gr.Textbox(label="π¨ββοΈ Full Name")
signup_role = gr.Radio(["practitioner", "organization"], label="Account Type", value="practitioner")
with gr.Group(visible=False) as org_fields:
org_name = gr.Textbox(label="Organization Name")
phone = gr.Textbox(label="Phone")
country_code = gr.Textbox(label="Country Code")
department = gr.Textbox(label="Department")
location = gr.Textbox(label="Location")
with gr.Group(visible=True) as prac_fields:
organization_dropdown = gr.Dropdown(choices=self.get_organizations_dropdown(), label="Select Organization")
signup_btn = gr.Button("β¨ Create Account", variant="primary")
signup_status = gr.HTML()
with gr.Column(visible=False) as practitioner_panel:
user_info = gr.HTML("")
logout_btn_prac = gr.Button("πͺ Logout", variant="secondary")
with gr.Tabs():
# ------------------- WOUND ANALYSIS -------------------
with gr.Tab("π¬ Wound Analysis"):
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>π Patient Selection</h3>")
patient_mode = gr.Radio(
["Existing patient", "New patient"],
label="Patient mode",
value="Existing patient"
)
existing_patient_dd = gr.Dropdown(
choices=[],
label="Select existing patient (ID β’ Name)",
interactive=True
)
with gr.Group(visible=False) as new_patient_group:
new_patient_name = gr.Textbox(label="Patient Name")
new_patient_age = gr.Number(label="Age", value=30, minimum=0, maximum=120)
new_patient_gender = gr.Dropdown(choices=["Male", "Female", "Other"], value="Male", label="Gender")
gr.HTML("<h3>π©Ή Wound Information</h3>")
wound_location = gr.Textbox(label="Wound Location", placeholder="e.g., Left ankle")
wound_duration = gr.Textbox(label="Wound Duration", placeholder="e.g., 2 weeks")
pain_level = gr.Slider(0, 10, value=5, step=1, label="Pain Level (0-10)")
gr.HTML("<h3>βοΈ Clinical Assessment</h3>")
moisture_level = gr.Dropdown(["Dry", "Moist", "Wet", "Saturated"], value="Moist", label="Moisture Level")
infection_signs = gr.Dropdown(["None", "Mild", "Moderate", "Severe"], value="None", label="Signs of Infection")
diabetic_status = gr.Dropdown(["Non-diabetic", "Type 1", "Type 2", "Gestational"], value="Non-diabetic", label="Diabetic Status")
with gr.Column(scale=1):
gr.HTML("<h3>πΈ Wound Image</h3>")
wound_image = gr.Image(label="Upload Wound Image", type="filepath")
# Slider to adjust the automatic segmentation mask. Positive values dilate
# (expand) the mask, negative values erode (shrink) it. The value represents
# roughly percentage change where each 5 units corresponds to one iteration.
seg_adjust_slider = gr.Slider(
minimum=-20,
maximum=20,
value=0,
step=1,
label="Segmentation Adjustment",
info="Adjust the automatic segmentation (negative shrinks, positive expands)"
)
gr.HTML("<h3>π Medical History</h3>")
previous_treatment = gr.Textbox(label="Previous Treatment", lines=3)
medical_history = gr.Textbox(label="Medical History", lines=3)
medications = gr.Textbox(label="Current Medications", lines=2)
allergies = gr.Textbox(label="Known Allergies", lines=2)
additional_notes = gr.Textbox(label="Additional Notes", lines=3)
# Initial analysis button
analyze_btn = gr.Button("π¬ Preview Segmentation", variant="primary", elem_id="analyze-btn")
# Segmentation preview section (initially hidden)
with gr.Group(visible=False) as segmentation_preview_group:
gr.HTML("<h3>π― Segmentation Preview</h3>")
segmentation_preview = gr.Image(label="Automatic Segmentation", interactive=False)
with gr.Row():
accept_segmentation_btn = gr.Button("β
Accept & Generate Full Report", variant="primary")
manual_edit_btn = gr.Button("βοΈ Manual Edit", variant="secondary")
segmentation_only_btn = gr.Button("π― Get Segmentation Only", variant="secondary")
# Manual editing section (initially hidden)
with gr.Group(visible=False) as manual_edit_group:
gr.HTML("""
<div style="background: #e6f3ff; padding: 15px; border-radius: 8px; margin: 10px 0;">
<h4 style="margin: 0 0 10px 0; color: #1a365d;">π Manual Segmentation Instructions</h4>
<p style="margin: 0; color: #2c5282;">
Use the drawing tool below to manually mark the wound area.
Select the pen tool and draw over the wound region to create your mask.
</p>
</div>
""")
# Manual mask input using ImageMask component
manual_mask_input = gr.ImageMask(
sources=["upload"],
layers=False,
transforms=[],
format="png",
label="Manual Segmentation - Draw on the image to mark wound area",
show_label=True,
interactive=True
)
with gr.Row():
process_manual_btn = gr.Button("π¬ Generate Report with Manual Mask", variant="primary")
manual_segmentation_only_btn = gr.Button("π― Get Manual Segmentation Only", variant="secondary")
analysis_output = gr.HTML("")
# ------------------- PATIENT HISTORY -------------------
with gr.Tab("π Patient History"):
with gr.Row():
with gr.Column(scale=2):
history_btn = gr.Button("π Load Patient History", variant="primary")
patient_history_output = gr.HTML("")
with gr.Column(scale=1):
search_patient_name = gr.Textbox(label="Search patient by name")
search_patient_btn = gr.Button("π Search", variant="secondary")
specific_patient_output = gr.HTML("")
gr.HTML("<hr style='margin:10px 0 6px 0;border:none;border-top:1px solid #e2e8f0'>")
with gr.Row():
view_details_dd = gr.Dropdown(choices=[], label="Select patient to view details")
view_details_btn = gr.Button("π View Details (Timeline)", variant="primary")
view_details_output = gr.HTML("")
with gr.Column(visible=False) as organization_panel:
gr.HTML("<div class='status-warning'>Organization dashboard coming soon.</div>")
logout_btn_org = gr.Button("πͺ Logout", variant="secondary")
# ----------------------- handlers -----------------------
def toggle_role_fields(role):
return {
org_fields: gr.update(visible=(role == "organization")),
prac_fields: gr.update(visible=(role != "organization"))
}
def handle_signup(username, email, password, name, role, org_name_v, phone_v, cc_v, dept_v, loc_v, org_dropdown):
try:
organization_id = None
if role == "practitioner":
organization_id = _resolve_org_id_from_dropdown(org_dropdown)
ok = self.auth_manager.create_user(
username=username,
email=email,
password=password,
name=name,
role=role,
org_name=(org_name_v or name) if role == "organization" else "",
phone=phone_v if role == "organization" else "",
country_code=cc_v if role == "organization" else "",
department=dept_v if role == "organization" else "",
location=loc_v if role == "organization" else "",
organization_id=organization_id
)
if ok:
return "<div class='status-success'>β
Account created. Please log in.</div>"
return "<div class='status-error'>β Could not create account. Username/email may exist.</div>"
except Exception as e:
return f"<div class='status-error'>β Error: {html.escape(str(e))}</div>"
def handle_login(username, password):
user = self.auth_manager.authenticate_user(username, password)
if not user:
return {
login_status: "<div class='status-error'>β Invalid credentials.</div>"
}
self.current_user = user
uid = int(user.get("id"))
role = user.get("role")
if role == "practitioner":
_refresh_patient_dropdown(uid)
info = f"<div class='status-success'>Welcome, <strong>{html.escape(user.get('name','User'))}</strong> β {html.escape(role)}</div>"
updates = {login_status: info}
if role == "practitioner":
updates.update({
auth_panel: gr.update(visible=False),
practitioner_panel: gr.update(visible=True),
user_info: info,
existing_patient_dd: gr.update(choices=self._patient_choices),
view_details_dd: gr.update(choices=self._patient_choices),
})
else:
updates.update({
auth_panel: gr.update(visible=False),
organization_panel: gr.update(visible=True),
})
return updates
def handle_logout():
self.current_user = {}
return {
auth_panel: gr.update(visible=True),
practitioner_panel: gr.update(visible=False),
organization_panel: gr.update(visible=False),
login_status: "<div class='status-warning'>Please sign in.</div>",
segmentation_preview_group: gr.update(visible=False),
manual_edit_group: gr.update(visible=False),
analysis_output: ""
}
def toggle_patient_mode(mode):
return {
existing_patient_dd: gr.update(visible=(mode == "Existing patient")),
new_patient_group: gr.update(visible=(mode == "New patient"))
}
def process_image_for_segmentation(
mode, existing_label, np_name, np_age, np_gender,
w_loc, w_dur, pain, moist, infect, diabetic,
prev_tx, med_hist, meds, alls, notes, img_path, seg_adjust
):
"""Process image and show segmentation preview"""
if not img_path:
return {
segmentation_preview_group: gr.update(visible=False),
analysis_output: "<div class='status-error'>β Please upload a wound image.</div>"
}
try:
# Run initial analysis to get segmentation
user_id = int(self.current_user.get("id", 0) or 0)
if not user_id:
return {
segmentation_preview_group: gr.update(visible=False),
analysis_output: "<div class='status-error'>β Please login first.</div>"
}
# Prepare questionnaire data for AI
if mode == "Existing patient":
pid = _label_to_id(existing_label)
if not pid:
return {
segmentation_preview_group: gr.update(visible=False),
analysis_output: "<div class='status-warning'>β οΈ Select an existing patient.</div>"
}
# Fetch patient data
row = self.database_manager.execute_query_one(
"SELECT id, name, age, gender FROM patients WHERE id=%s LIMIT 1", (pid,)
)
pcore = row or {}
patient_name_v = pcore.get("name")
patient_age_v = pcore.get("age")
patient_gender_v = pcore.get("gender")
else:
patient_name_v = np_name
patient_age_v = np_age
patient_gender_v = np_gender
q_for_ai = {
'age': patient_age_v,
'diabetic': 'Yes' if diabetic != 'Non-diabetic' else 'No',
'allergies': alls,
'date_of_injury': 'Unknown',
'professional_care': 'Yes',
'oozing_bleeding': 'Minor Oozing' if infect != 'None' else 'None',
'infection': 'Yes' if infect != 'None' else 'No',
'moisture': moist,
'patient_name': patient_name_v,
'patient_gender': patient_gender_v,
'wound_location': w_loc,
'wound_duration': w_dur,
'pain_level': pain,
'previous_treatment': prev_tx,
'medical_history': med_hist,
'medications': meds,
'additional_notes': notes
}
# Run visual analysis only to get segmentation
image_pil = Image.open(img_path)
visual_results = self.wound_analyzer.perform_visual_analysis(image_pil)
if not visual_results:
return {
segmentation_preview_group: gr.update(visible=False),
analysis_output: "<div class='status-error'>β Failed to analyze image.</div>"
}
# Get segmentation image path
seg_path = visual_results.get("segmentation_image_path")
if not seg_path or not os.path.exists(seg_path):
return {
segmentation_preview_group: gr.update(visible=False),
analysis_output: "<div class='status-error'>β Segmentation failed.</div>"
}
return {
segmentation_preview_group: gr.update(visible=True),
segmentation_preview: seg_path,
manual_edit_group: gr.update(visible=False),
analysis_output: "<div class='status-success'>β
Segmentation preview ready. Review and choose to accept or manually edit.</div>"
}
except Exception as e:
logging.error(f"Segmentation preview error: {e}")
return {
segmentation_preview_group: gr.update(visible=False),
analysis_output: f"<div class='status-error'>β Error: {html.escape(str(e))}</div>"
}
def show_manual_edit_interface(img_path):
"""Show manual editing interface with the original image"""
if not img_path or not os.path.exists(img_path):
return {
manual_edit_group: gr.update(visible=False),
analysis_output: "<div class='status-error'>β Original image not available for editing.</div>"
}
return {
manual_edit_group: gr.update(visible=True),
manual_mask_input: img_path, # Load the original image for manual editing
analysis_output: "<div class='status-warning'>β οΈ Use the drawing tool to manually mark the wound area, then click your desired action.</div>"
}
def process_manual_mask(mask_data):
"""Process the manual mask from ImageMask component"""
if not mask_data:
return None
try:
# Extract the mask from the ImageMask component
# The mask_data contains both the background image and the drawn mask
if isinstance(mask_data, dict):
# Check if composite exists (newer format)
if "composite" in mask_data:
composite_img = mask_data["composite"]
# Convert to grayscale and extract the drawn areas
gray = cv2.cvtColor(composite_img, cv2.COLOR_RGB2GRAY)
# Create mask where drawn areas are white (255) and background is black (0)
_, mask = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY)
# Check if layers exist (older format)
elif "layers" in mask_data and len(mask_data["layers"]) > 0:
# Get the alpha channel from the first layer (the drawn mask)
alpha_channel = mask_data["layers"][0][:, :, 3]
# Convert to binary mask - drawn areas have alpha > 0
mask = np.where(alpha_channel > 0, 255, 0).astype(np.uint8)
else:
return None
# Save the mask temporarily
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
cv2.imwrite(tmp.name, mask)
manual_mask_path = tmp.name
return manual_mask_path
else:
return None
except Exception as e:
logging.error(f"Manual mask processing error: {e}")
return None
def get_segmentation_only(img_path, manual_mask_path=None):
"""Get only the segmentation mask without full analysis"""
try:
if not img_path:
return "<div class='status-error'>β No image provided.</div>"
# Run visual analysis to get segmentation
image_pil = Image.open(img_path)
if manual_mask_path:
# Use manual mask
visual_results = self.wound_analyzer.analyze_wound(
img_path, {}, seg_adjust=0.0, manual_mask_path=manual_mask_path
)
mask_type = "Manual"
else:
# Use automatic segmentation
visual_results = self.wound_analyzer.perform_visual_analysis(image_pil)
mask_type = "Automatic"
if not visual_results:
return "<div class='status-error'>β Failed to generate segmentation.</div>"
# Get the segmentation mask path
roi_mask_path = visual_results.get("roi_mask_path")
seg_path = visual_results.get("segmentation_image_path")
if not roi_mask_path or not os.path.exists(roi_mask_path):
return "<div class='status-error'>β Segmentation mask not found.</div>"
# Convert mask to base64 for display
mask_b64 = self.image_to_base64(roi_mask_path)
seg_b64 = self.image_to_base64(seg_path) if seg_path and os.path.exists(seg_path) else None
html_output = f"""
<div style="max-width: 800px; margin: 0 auto; background: white; border-radius: 16px; box-shadow: 0 8px 32px rgba(0,0,0,0.1); overflow: hidden;">
<div style="background: linear-gradient(135deg, #3182ce 0%, #2c5aa0 100%); color: white; padding: 30px; text-align: center;">
<h1 style="margin: 0; font-size: 28px; font-weight: 700;">π― {mask_type} Wound Segmentation</h1>
<p style="margin: 10px 0 0 0; opacity: 0.9; font-size: 16px;">Binary mask showing wound boundaries</p>
</div>
<div style="padding: 30px;">
<div class="status-success" style="margin-bottom: 20px;">
<strong>β
Segmentation Status:</strong> {mask_type} segmentation completed successfully
</div>
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px; margin: 20px 0;">
<div style="background: #f8f9fa; padding: 20px; border-radius: 12px; text-align: center;">
<h3 style="color: #2d3748; margin-top: 0;">Binary Mask</h3>
{f'<img src="{mask_b64}" style="width: 100%; border-radius: 8px;" alt="Segmentation Mask">' if mask_b64 else '<p>Mask not available</p>'}
<p style="color: #4a5568; margin: 10px 0 0 0; font-size: 14px;">White = Wound, Black = Background</p>
</div>
<div style="background: #f8f9fa; padding: 20px; border-radius: 12px; text-align: center;">
<h3 style="color: #2d3748; margin-top: 0;">Overlay Visualization</h3>
{f'<img src="{seg_b64}" style="width: 100%; border-radius: 8px;" alt="Segmentation Overlay">' if seg_b64 else '<p>Overlay not available</p>'}
<p style="color: #4a5568; margin: 10px 0 0 0; font-size: 14px;">Red overlay shows detected wound area</p>
</div>
</div>
<div style="background: #fff5f5; border: 2px solid #feb2b2; padding: 20px; border-radius: 12px; margin: 20px 0;">
<h3 style="color: #c53030; margin-top: 0;">π₯ Download Instructions</h3>
<p style="color: #742a2a; margin: 0;">Right-click on the binary mask image above and select "Save image as..." to download the segmentation mask for your use.</p>
</div>
</div>
</div>
"""
# Clean up temporary file if it exists
if manual_mask_path and os.path.exists(manual_mask_path):
try:
os.unlink(manual_mask_path)
except:
pass
return html_output
except Exception as e:
logging.error(f"Segmentation only error: {e}")
return f"<div class='status-error'>β Error: {html.escape(str(e))}</div>"
def run_full_analysis_with_manual_mask(
mode, existing_label, np_name, np_age, np_gender,
w_loc, w_dur, pain, moist, infect, diabetic,
prev_tx, med_hist, meds, alls, notes, img_path, seg_adjust, mask_data
):
"""Run full analysis with manual mask"""
try:
# Process manual mask
manual_mask_path = process_manual_mask(mask_data)
# Run the full analysis with manual mask
result_html = standalone_run_analysis(
self, self.current_user, self.database_manager, self.wound_analyzer,
mode, existing_label, np_name, np_age, np_gender,
w_loc, w_dur, pain, moist, infect, diabetic,
prev_tx, med_hist, meds, alls, notes, img_path,
seg_adjust, manual_mask_path
)
# Clean up temporary file
if manual_mask_path and os.path.exists(manual_mask_path):
try:
os.unlink(manual_mask_path)
except:
pass
return {
analysis_output: result_html,
segmentation_preview_group: gr.update(visible=False),
manual_edit_group: gr.update(visible=False)
}
except Exception as e:
logging.error(f"Manual analysis error: {e}")
return {
analysis_output: f"<div class='status-error'>β Analysis failed: {html.escape(str(e))}</div>"
}
def get_manual_segmentation_only(mask_data, img_path):
"""Get only the manual segmentation mask"""
try:
manual_mask_path = process_manual_mask(mask_data)
if not manual_mask_path:
return "<div class='status-error'>β Failed to process manual mask.</div>"
result = get_segmentation_only(img_path, manual_mask_path)
return {
analysis_output: result,
segmentation_preview_group: gr.update(visible=False),
manual_edit_group: gr.update(visible=False)
}
except Exception as e:
logging.error(f"Manual segmentation only error: {e}")
return {
analysis_output: f"<div class='status-error'>β Error: {html.escape(str(e))}</div>"
}
def get_auto_segmentation_only(img_path):
"""Get only the automatic segmentation mask"""
try:
result = get_segmentation_only(img_path, None)
return {
analysis_output: result,
segmentation_preview_group: gr.update(visible=False),
manual_edit_group: gr.update(visible=False)
}
except Exception as e:
logging.error(f"Auto segmentation only error: {e}")
return {
analysis_output: f"<div class='status-error'>β Error: {html.escape(str(e))}</div>"
}
def run_full_analysis_accept_segmentation(
mode, existing_label, np_name, np_age, np_gender,
w_loc, w_dur, pain, moist, infect, diabetic,
prev_tx, med_hist, meds, alls, notes, img_path, seg_adjust
):
"""Run full analysis accepting the automatic segmentation"""
try:
result_html = standalone_run_analysis(
self, self.current_user, self.database_manager, self.wound_analyzer,
mode, existing_label, np_name, np_age, np_gender,
w_loc, w_dur, pain, moist, infect, diabetic,
prev_tx, med_hist, meds, alls, notes, img_path,
seg_adjust, None # No manual mask
)
return {
analysis_output: result_html,
segmentation_preview_group: gr.update(visible=False),
manual_edit_group: gr.update(visible=False)
}
except Exception as e:
logging.error(f"Analysis error: {e}")
return {
analysis_output: f"<div class='status-error'>β Analysis failed: {html.escape(str(e))}</div>"
}
def load_patient_history():
try:
uid = int(self.current_user.get("id", 0))
if not uid:
return "<div class='status-error'>β Please login first.</div>"
history_data = self.patient_history_manager.get_patient_history(uid)
if not history_data:
return "<div class='status-warning'>β οΈ No patient history found.</div>"
html_report = self.report_generator.generate_history_report(history_data)
return html_report
except Exception as e:
logging.error(f"History load error: {e}")
return f"<div class='status-error'>β Error: {html.escape(str(e))}</div>"
def search_patient_by_name(name):
try:
uid = int(self.current_user.get("id", 0))
if not uid:
return "<div class='status-error'>β Please login first.</div>"
if not name or not name.strip():
return "<div class='status-warning'>β οΈ Enter a patient name to search.</div>"
results = self.patient_history_manager.search_patients_by_name(uid, name.strip())
if not results:
return f"<div class='status-warning'>β οΈ No patients found matching '{html.escape(name)}'.</div>"
html_report = self.report_generator.generate_search_results(results, name)
return html_report
except Exception as e:
logging.error(f"Patient search error: {e}")
return f"<div class='status-error'>β Error: {html.escape(str(e))}</div>"
def view_patient_details(selected_label):
try:
uid = int(self.current_user.get("id", 0))
if not uid:
return "<div class='status-error'>β Please login first.</div>"
pid = _label_to_id(selected_label)
if not pid:
return "<div class='status-warning'>β οΈ Select a patient to view details.</div>"
details = self.patient_history_manager.get_patient_details(uid, pid)
if not details:
return "<div class='status-warning'>β οΈ No details found for selected patient.</div>"
html_report = self.report_generator.generate_patient_timeline(details)
return html_report
except Exception as e:
logging.error(f"Patient details error: {e}")
return f"<div class='status-error'>β Error: {html.escape(str(e))}</div>"
# ----------------------- Event bindings -----------------------
signup_role.change(toggle_role_fields, [signup_role], [org_fields, prac_fields])
signup_btn.click(
handle_signup,
[signup_username, signup_email, signup_password, signup_name, signup_role,
org_name, phone, country_code, department, location, organization_dropdown],
[signup_status]
)
login_btn.click(
handle_login,
[login_username, login_password],
[login_status, auth_panel, practitioner_panel, organization_panel, user_info,
existing_patient_dd, view_details_dd]
)
logout_btn_prac.click(
handle_logout,
[],
[auth_panel, practitioner_panel, organization_panel, login_status,
segmentation_preview_group, manual_edit_group, analysis_output]
)
logout_btn_org.click(
handle_logout,
[],
[auth_panel, practitioner_panel, organization_panel, login_status,
segmentation_preview_group, manual_edit_group, analysis_output]
)
patient_mode.change(toggle_patient_mode, [patient_mode], [existing_patient_dd, new_patient_group])
# Segmentation preview workflow
analyze_btn.click(
process_image_for_segmentation,
[patient_mode, existing_patient_dd, new_patient_name, new_patient_age, new_patient_gender,
wound_location, wound_duration, pain_level, moisture_level, infection_signs, diabetic_status,
previous_treatment, medical_history, medications, allergies, additional_notes, wound_image, seg_adjust_slider],
[segmentation_preview_group, segmentation_preview, manual_edit_group, analysis_output]
)
# Accept segmentation and generate full report
accept_segmentation_btn.click(
run_full_analysis_accept_segmentation,
[patient_mode, existing_patient_dd, new_patient_name, new_patient_age, new_patient_gender,
wound_location, wound_duration, pain_level, moisture_level, infection_signs, diabetic_status,
previous_treatment, medical_history, medications, allergies, additional_notes, wound_image, seg_adjust_slider],
[analysis_output, segmentation_preview_group, manual_edit_group]
)
# Get segmentation only (automatic)
segmentation_only_btn.click(
get_auto_segmentation_only,
[wound_image],
[analysis_output, segmentation_preview_group, manual_edit_group]
)
# Show manual edit interface
manual_edit_btn.click(
show_manual_edit_interface,
[wound_image],
[manual_edit_group, manual_mask_input, analysis_output]
)
# Process manual mask and generate report
process_manual_btn.click(
run_full_analysis_with_manual_mask,
[patient_mode, existing_patient_dd, new_patient_name, new_patient_age, new_patient_gender,
wound_location, wound_duration, pain_level, moisture_level, infection_signs, diabetic_status,
previous_treatment, medical_history, medications, allergies, additional_notes, wound_image, seg_adjust_slider, manual_mask_input],
[analysis_output, segmentation_preview_group, manual_edit_group]
)
# Get manual segmentation only
manual_segmentation_only_btn.click(
get_manual_segmentation_only,
[manual_mask_input, wound_image],
[analysis_output, segmentation_preview_group, manual_edit_group]
)
history_btn.click(load_patient_history, [], [patient_history_output])
search_patient_btn.click(search_patient_by_name, [search_patient_name], [specific_patient_output])
view_details_btn.click(view_patient_details, [view_details_dd], [view_details_output])
return app
def _format_comprehensive_analysis_results(self, analysis_result, image_path, questionnaire_data):
"""Format comprehensive analysis results with enhanced visual presentation
- Shows 'Manual Segmentation' card if a manual mask/overlay was used
- Removes the Measurements card from the Visual Analysis Gallery
"""
import os
try:
visual_analysis = analysis_result.get("visual_analysis", {}) or {}
report = analysis_result.get("report", "")
# Extract key metrics
wound_type = visual_analysis.get("wound_type", "Unknown")
length_cm = visual_analysis.get("length_cm", 0)
breadth_cm = visual_analysis.get("breadth_cm", 0)
area_cm2 = visual_analysis.get("surface_area_cm2", 0)
skin_tone_label = visual_analysis.get("skin_tone_label", "Unknown")
ita_deg = visual_analysis.get("ita_degrees")
tissue_type = visual_analysis.get("tissue_type", "Unknown")
# Detect if manual mask was used (look across common keys/flags)
manual_used = bool(
analysis_result.get("manual_mask_used")
or visual_analysis.get("manual_mask_used")
)
# Try to discover manual overlay/binary mask paths (handle multiple possible keys)
manual_overlay_path = None
for k in [
"manual_segmentation_image_path",
"manual_overlay_path",
"manual_segmentation_overlay_path",
]:
p = visual_analysis.get(k)
if p and os.path.exists(p):
manual_overlay_path = p
manual_used = True
break
manual_binary_path = None
for k in [
"manual_roi_mask_path",
"manual_mask_binary_path",
"manual_mask_path",
]:
p = visual_analysis.get(k)
if p and os.path.exists(p):
manual_binary_path = p
manual_used = True
break
# Generate risk assessment
risk_assessment = self._generate_risk_assessment(questionnaire_data)
risk_level = risk_assessment.get("risk_level", "Unknown")
risk_score = risk_assessment.get("risk_score", 0)
risk_factors = risk_assessment.get("risk_factors", [])
risk_class = risk_level.lower().replace(" ", "_")
# Format risk factors
if risk_factors:
risk_factors_html = "<ul style='margin: 10px 0; padding-left: 20px;'>"
for factor in risk_factors:
risk_factors_html += f"<li style='margin: 5px 0; color: #2d3748;'>{html.escape(str(factor))}</li>"
risk_factors_html += "</ul>"
else:
risk_factors_html = "<p style='color: #4a5568; font-style: italic;'>No specific risk factors identified.</p>"
# ---------------------- Image Gallery ----------------------
image_gallery_html = "<div class='image-gallery'>"
# Original image
if image_path and os.path.exists(image_path):
img_b64 = self.image_to_base64(image_path)
if img_b64:
image_gallery_html += f"""
<div class="image-item">
<img src="{img_b64}" alt="Original Wound Image">
<h4>πΈ Original Image</h4>
<p>Uploaded wound photograph for analysis</p>
</div>
"""
# Detection visualization
detection_path = visual_analysis.get("detection_image_path")
if detection_path and os.path.exists(detection_path):
img_b64 = self.image_to_base64(detection_path)
if img_b64:
conf = visual_analysis.get('detection_confidence', 0.0)
try:
conf_str = f"{float(conf):.1%}"
except Exception:
conf_str = str(conf)
image_gallery_html += f"""
<div class="image-item">
<img src="{img_b64}" alt="Wound Detection">
<h4>π― Wound Detection</h4>
<p>AI-powered wound boundary detection with confidence: {conf_str}</p>
</div>
"""
# Show MANUAL segmentation card if available/used
if manual_overlay_path or manual_binary_path:
if manual_overlay_path and os.path.exists(manual_overlay_path):
img_b64 = self.image_to_base64(manual_overlay_path)
elif manual_binary_path and os.path.exists(manual_binary_path):
img_b64 = self.image_to_base64(manual_binary_path)
else:
img_b64 = None
if img_b64:
image_gallery_html += f"""
<div class="image-item">
<img src="{img_b64}" alt="Manual Segmentation">
<h4>βοΈ Manual Segmentation</h4>
<p>Clinician-adjusted wound boundary used for this report</p>
</div>
"""
# Automatic segmentation (still show if present)
seg_path = visual_analysis.get("segmentation_image_path")
if seg_path and os.path.exists(seg_path):
img_b64 = self.image_to_base64(seg_path)
if img_b64:
image_gallery_html += f"""
<div class="image-item">
<img src="{img_b64}" alt="Wound Segmentation">
<h4>π Wound Segmentation</h4>
<p>Precise wound boundary identification and tissue analysis</p>
</div>
"""
# NOTE: Measurements card intentionally REMOVED from gallery as requested
# (Do NOT add segmentation_annotated_path card)
image_gallery_html += "</div>"
# Convert report markdown to HTML
report_html = self.markdown_to_html(report) if report else ""
status_line = (
"Analysis completed successfully with <strong>manual</strong> segmentation"
if manual_used else
"Analysis completed successfully with comprehensive wound assessment"
)
html_output = f"""
<div style="max-width: 1200px; margin: 0 auto; background: white; border-radius: 16px; box-shadow: 0 8px 32px rgba(0,0,0,0.1); overflow: hidden;">
<div style="background: linear-gradient(135deg, #3182ce 0%, #2c5aa0 100%); color: white; padding: 40px; text-align: center;">
<h1 style="margin: 0; font-size: 32px; font-weight: 700;">π¬ SmartHeal AI Comprehensive Analysis</h1>
<p style="margin: 15px 0 0 0; opacity: 0.9; font-size: 18px;">Advanced Computer Vision & Medical AI Assessment</p>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 8px; margin-top: 20px;">
<p style="margin: 0; font-size: 16px;"><strong>Patient:</strong> {html.escape(str(questionnaire_data.get('patient_name', 'Unknown')))} | <strong>Analysis Date:</strong> {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}</p>
</div>
</div>
<div style="padding: 40px;">
<div class="status-success" style="margin-bottom: 30px;">
<strong>β
Analysis Status:</strong> {status_line}
</div>
<!-- Image Gallery Section -->
<div style="margin-bottom: 40px;">
<h2 style="color: #2d3748; font-size: 24px; margin-bottom: 20px; border-bottom: 2px solid #e53e3e; padding-bottom: 10px;">πΌοΈ Visual Analysis Gallery</h2>
{image_gallery_html}
</div>
<!-- Wound Detection & Classification -->
<div style="background: #f8f9fa; padding: 30px; border-radius: 12px; margin-bottom: 30px;">
<h2 style="color: #2d3748; margin-top: 0;">π Wound Detection & Classification</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #3182ce; margin: 0 0 10px 0;">Wound Type</h3>
<p style="font-weight: 600; font-size: 18px; color: #2d3748; margin: 0;">{html.escape(str(wound_type))}</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #3182ce; margin: 0 0 10px 0;">Location</h3>
<p style="font-weight: 600; font-size: 18px; color: #2d3748; margin: 0;">{html.escape(str(questionnaire_data.get('wound_location', 'Not specified')))}</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #3182ce; margin: 0 0 10px 0;">Skin Tone</h3>
<p style="font-weight: 600; font-size: 18px; color: #2d3748; margin: 0;">{html.escape(str(skin_tone_label))}{f" ({ita_deg:.1f}Β°)" if ita_deg is not None else ""}</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #3182ce; margin: 0 0 10px 0;">Tissue Type</h3>
<p style="font-weight: 600; font-size: 18px; color: #2d3748; margin: 0;">{html.escape(str(tissue_type))}</p>
</div>
</div>
</div>
<!-- Wound Measurements (numeric section remains) -->
<div style="background: #e7f5ff; padding: 30px; border-radius: 12px; margin-bottom: 30px;">
<h2 style="color: #2d3748; margin-top: 0;">π Wound Measurements</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(150px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #e53e3e; margin: 0 0 10px 0;">Length</h3>
<p style="font-weight: 700; font-size: 24px; color: #2d3748; margin: 0;">{length_cm:.2f} cm</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #e53e3e; margin: 0 0 10px 0;">Width</h3>
<p style="font-weight: 700; font-size: 24px; color: #2d3748; margin: 0;">{breadth_cm:.2f} cm</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #e53e3e; margin: 0 0 10px 0;">Surface Area</h3>
<p style="font-weight: 700; font-size: 24px; color: #2d3748; margin: 0;">{area_cm2:.2f} cmΒ²</p>
</div>
</div>
</div>
<!-- Patient Information Summary -->
<div style="background: #f0f8f0; padding: 30px; border-radius: 12px; margin-bottom: 30px;">
<h2 style="color: #2d3748; margin-top: 0;">π€ Patient Information Summary</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 15px;">
<div><strong>Age:</strong> {html.escape(str(questionnaire_data.get('age', 'Not specified')))} years</div>
<div><strong>Gender:</strong> {html.escape(str(questionnaire_data.get('patient_gender', 'Not specified')))}</div>
<div><strong>Diabetic Status:</strong> {html.escape(str(questionnaire_data.get('diabetic', 'Unknown')))}</div>
<div><strong>Pain Level:</strong> {html.escape(str(questionnaire_data.get('pain_level', 'Not assessed')))} / 10</div>
<div><strong>Wound Duration:</strong> {html.escape(str(questionnaire_data.get('wound_duration', 'Not specified')))}</div>
<div><strong>Moisture Level:</strong> {html.escape(str(questionnaire_data.get('moisture', 'Not assessed')))}</div>
</div>
{f"<div style='margin-top: 20px;'><strong>Medical History:</strong> {html.escape(str(questionnaire_data.get('medical_history', 'None provided')))}</div>" if questionnaire_data.get('medical_history') else ""}
{f"<div style='margin-top: 10px;'><strong>Current Medications:</strong> {html.escape(str(questionnaire_data.get('medications', 'None listed')))}</div>" if questionnaire_data.get('medications') else ""}
{f"<div style='margin-top: 10px;'><strong>Known Allergies:</strong> {html.escape(str(questionnaire_data.get('allergies', 'None listed')))}</div>" if questionnaire_data.get('allergies') else ""}
</div>
<!-- AI Generated Report -->
{f'<div style="background: #f8f9fa; padding: 30px; border-radius: 12px; margin-bottom: 30px;"><h2 style="color: #2d3748; margin-top: 0;">π€ AI-Generated Clinical Report</h2><div style="background: white; padding: 25px; border-radius: 8px; box-shadow: 0 2px 8px rgba(0,0,0,0.05);">{report_html}</div></div>' if report_html else ''}
<!-- Important Disclaimers -->
<div style="background: #fff5f5; border: 2px solid #feb2b2; padding: 25px; border-radius: 12px; margin: 30px 0;">
<h3 style="color: #c53030; margin-top: 0;">β οΈ Important Medical Disclaimers</h3>
<ul style="color: #742a2a; line-height: 1.6;">
<li><strong>Not a Medical Diagnosis:</strong> This AI analysis is for informational purposes only and does not constitute medical advice, diagnosis, or treatment.</li>
<li><strong>Professional Consultation Required:</strong> Always consult with qualified healthcare professionals for proper clinical assessment and treatment decisions.</li>
<li><strong>Measurement Accuracy:</strong> All measurements are estimates based on computer vision algorithms and should be verified with clinical tools.</li>
<li><strong>Risk Assessment Limitations:</strong> Risk factors are based on provided information and may not reflect the complete clinical picture.</li>
</ul>
</div>
<!-- Footer -->
<div style="text-align: center; padding: 30px 0; border-top: 2px solid #e2e8f0; margin-top: 30px;">
<p style="color: #6c757d; font-style: italic; font-size: 16px; margin: 0;">
π₯ Analysis completed by <strong>SmartHeal AI</strong> - Advanced Wound Care Assistant<br>
<small>Report generated on {datetime.now().strftime('%B %d, %Y at %I:%M %p')}</small>
</p>
</div>
</div>
</div>
"""
return html_output
except Exception as e:
logging.error(f"Error formatting comprehensive results: {e}")
return f"<div class='status-error'>β Error displaying results: {str(e)}</div>"
def _generate_risk_assessment(self, questionnaire_data):
"""Generate risk assessment based on questionnaire data"""
if not questionnaire_data:
return {'risk_level': 'Unknown', 'risk_score': 0, 'risk_factors': []}
risk_factors = []
risk_score = 0
try:
# Age
age = questionnaire_data.get('age', 0)
if isinstance(age, str):
try:
age = int(age)
except ValueError:
age = 0
if age > 65:
risk_factors.append("Advanced age (>65 years)")
risk_score += 2
elif age > 50:
risk_factors.append("Older adult (50-65 years)")
risk_score += 1
# Diabetes
diabetic_status = str(questionnaire_data.get('diabetic', '')).lower()
if 'yes' in diabetic_status:
risk_factors.append("Diabetes mellitus")
risk_score += 3
# Infection
infection = str(questionnaire_data.get('infection', '')).lower()
if 'yes' in infection:
risk_factors.append("Signs of infection present")
risk_score += 3
# Pain
pain_level = questionnaire_data.get('pain_level', 0)
if isinstance(pain_level, str):
try:
pain_level = float(pain_level)
except ValueError:
pain_level = 0
if pain_level >= 7:
risk_factors.append("High pain level (β₯7/10)")
risk_score += 2
elif pain_level >= 5:
risk_factors.append("Moderate pain level (5-6/10)")
risk_score += 1
# Duration
duration = str(questionnaire_data.get('wound_duration', '')).lower()
if any(term in duration for term in ['month', 'months', 'year', 'years']):
risk_factors.append("Chronic wound (>4 weeks)")
risk_score += 3
# Moisture
moisture = str(questionnaire_data.get('moisture', '')).lower()
if any(term in moisture for term in ['wet', 'saturated']):
risk_factors.append("Excessive wound exudate")
risk_score += 1
# Medical history
medical_history = str(questionnaire_data.get('medical_history', '')).lower()
if any(term in medical_history for term in ['vascular', 'circulation', 'heart']):
risk_factors.append("Cardiovascular disease")
risk_score += 2
if any(term in medical_history for term in ['immune', 'cancer', 'steroid']):
risk_factors.append("Immune system compromise")
risk_score += 2
if any(term in medical_history for term in ['smoking', 'tobacco']):
risk_factors.append("Smoking history")
risk_score += 2
# Risk level
if risk_score >= 8:
risk_level = "Very High"
elif risk_score >= 6:
risk_level = "High"
elif risk_score >= 3:
risk_level = "Moderate"
else:
risk_level = "Low"
return {
'risk_score': risk_score,
'risk_level': risk_level,
'risk_factors': risk_factors
}
except Exception as e:
logging.error(f"Risk assessment error: {e}")
return {
'risk_score': 0,
'risk_level': 'Unknown',
'risk_factors': ['Unable to assess risk due to data processing error']
}
|