SmartHeal-Agentic-AI / src /ai_processor.py
SmartHeal's picture
Update src/ai_processor.py
e340e64 verified
raw
history blame
62 kB
# smartheal_ai_processor.py
# Verbose, instrumented version — preserves public class/function names
# Turn on deep logging: export LOGLEVEL=DEBUG SMARTHEAL_DEBUG=1
import os
import logging
from datetime import datetime
from typing import Optional, Dict, List, Tuple
# ---- Environment defaults (do NOT globally hint CUDA here) ----
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
LOGLEVEL = os.getenv("LOGLEVEL", "INFO").upper()
SMARTHEAL_DEBUG = os.getenv("SMARTHEAL_DEBUG", "0") == "1"
import cv2
import numpy as np
from PIL import Image
from PIL.ExifTags import TAGS
import os, logging
from huggingface_hub import HfFolder
# Read from env (prefer standard uppercase)
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("hf_token")
if HF_TOKEN:
# Persist for the ubuntu user so HF/Transformers can reuse it
HfFolder.save_token(HF_TOKEN)
# Also keep it in-process for libraries that accept a token kwarg
os.environ["HF_TOKEN"] = HF_TOKEN
logging.info("✅ Hugging Face token configured without interactive login.")
else:
logging.warning("⚠️ HF_TOKEN not set. Set it in /etc/default/smartheal for private/gated models.")
# --- Logging config ---
logging.basicConfig(
level=getattr(logging, LOGLEVEL, logging.INFO),
format="%(asctime)s - %(levelname)s - %(message)s",
)
def _log_kv(prefix: str, kv: Dict):
logging.debug(prefix + " | " + " | ".join(f"{k}={v}" for k, v in kv.items()))
# --- Spaces GPU decorator (REQUIRED) ---
from spaces import GPU as _SPACES_GPU
@_SPACES_GPU(enable_queue=True)
def smartheal_gpu_stub(ping: int = 0) -> str:
return "ready"
# ---- Paths / constants ----
UPLOADS_DIR = "uploads"
os.makedirs(UPLOADS_DIR, exist_ok=True)
HF_TOKEN = os.getenv("HF_TOKEN", None)
YOLO_MODEL_PATH = "src/best.pt"
SEG_MODEL_PATH = "src/segmentation_model.h5" # optional; legacy .h5 supported
GUIDELINE_PDFS = ["src/eHealth in Wound Care.pdf", "src/IWGDF Guideline.pdf", "src/evaluation.pdf"]
DATASET_ID = "SmartHeal/wound-image-uploads"
DEFAULT_PX_PER_CM = 38.0
PX_PER_CM_MIN, PX_PER_CM_MAX = 5.0, 1200.0
# Segmentation preprocessing knobs
SEG_EXPECTS_RGB = os.getenv("SEG_EXPECTS_RGB", "1") == "1" # most TF models trained on RGB
SEG_NORM = os.getenv("SEG_NORM", "0to1") # "0to1" | "imagenet"
SEG_THRESH = float(os.getenv("SEG_THRESH", "0.5"))
models_cache: Dict[str, object] = {}
knowledge_base_cache: Dict[str, object] = {}
# ---------- Utilities to prevent CUDA in main process ----------
from contextlib import contextmanager
@contextmanager
def _no_cuda_env():
"""
Mask GPUs so any library imported/constructed in the main process
cannot see CUDA (required for Spaces Stateless GPU).
"""
prev = os.environ.get("CUDA_VISIBLE_DEVICES")
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
try:
yield
finally:
if prev is None:
os.environ.pop("CUDA_VISIBLE_DEVICES", None)
else:
os.environ["CUDA_VISIBLE_DEVICES"] = prev
# ---------- Lazy imports (wrapped where needed) ----------
def _import_ultralytics():
# Prevent Ultralytics from probing CUDA on import
with _no_cuda_env():
from ultralytics import YOLO
return YOLO
def _import_tf_loader():
import tensorflow as tf
tf.config.set_visible_devices([], "GPU")
from tensorflow.keras.models import load_model
return load_model
def _import_hf_cls():
from transformers import pipeline
return pipeline
def _import_embeddings():
from langchain_community.embeddings import HuggingFaceEmbeddings
return HuggingFaceEmbeddings
def _import_langchain_pdf():
from langchain_community.document_loaders import PyPDFLoader
return PyPDFLoader
def _import_langchain_faiss():
from langchain_community.vectorstores import FAISS
return FAISS
def _import_hf_hub():
from huggingface_hub import HfApi, HfFolder
return HfApi, HfFolder
# ---------- SmartHeal prompts (system + user prefix) ----------
# ---------- SmartHeal prompts (system + user prefix) ----------
SMARTHEAL_SYSTEM_PROMPT = """\
You are SmartHeal Clinical Assistant, a wound-care decision-support system.
You analyze wound photographs and brief patient context to produce careful,
specific, guideline-informed recommendations WITHOUT diagnosing.
Output requirements (strict):
- Treat the vision pipeline measurements as ground truth; restate them once.
- Write in concise, clinical bullets with clear, actionable steps (no filler).
- Use EXACT section headings and order: Analysis; Medication and Treatment; Disclaimer.
- Provide a single primary plan plus sensible alternatives when appropriate (e.g., by exudate level).
- For dressings: name the category (e.g., foam/alginate/hydrogel/silver/iodine/PHMB/honey), typical wear time,
change frequency, and what to switch to if too wet/dry or if maceration appears.
- For offloading/compression/NPWT: state the indication criteria and practical device choice.
- For medications: suggest evidence-based options (generic names), with typical adult dose ranges, route, and duration;
include key contraindications/interactions and mark as “for clinician review”.
- Include a follow-up cadence (in days) and explicit switch/stop rules and escalation triggers.
- If information is missing, state assumptions briefly and proceed with a best-practice plan.
- Tone: professional, precise, conservative. Avoid definitive diagnoses or promises of cure.
- Length target: 220–350 words total. No preamble or closing beyond the specified sections.
"""
SMARTHEAL_USER_PREFIX = """\
Patient: {patient_info}
Visual findings: type={wound_type}, size={length_cm}x{breadth_cm} cm, area={area_cm2} cm^2,
detection_conf={det_conf:.2f}, calibration={px_per_cm} px/cm.
Guideline context (principles you may draw from—summarize, don’t quote verbatim):
{guideline_context}
Write a structured, actionable answer with these headings EXACTLY and nothing else:
Analysis
- Restate the measured size/area once and interpret exudate burden, likely bioburden risk, and peri-wound skin status.
- Note key risks tied to the wound type (e.g., DFU → pressure/neuropathy/ischemia), and any uncertainties or data gaps
(e.g., PAD status, glycemic control, duration). Be specific.
Medication and Treatment
- Cleansing/irrigation: solution, volume, and frequency.
- Debridement: if/when indicated; method options (conservative sharp, autolytic, enzymatic) and when to avoid.
- Dressing strategy: pick ONE primary dressing category based on the current exudate level; include change frequency,
expected wear time, and a backup option if too wet/dry or if maceration/odor occurs.
- Adjuncts: offloading (preferred device and when to use TCC vs removable walker), compression (only if appropriate; note ABI threshold),
barrier films/silicone contact layers, and criteria for NPWT (size, depth, exudate, surgical wounds).
- Medications (for clinician review): generic names with typical adult dose ranges, route, and duration:
* Analgesia (acetaminophen/NSAID with max daily dose cautions).
* Antimicrobials: topical options for localized critical colonization; systemic options ONLY if clinical infection criteria met.
Include top interactions/contraindications and monitoring (renal/hepatic disease, anticoagulation, pregnancy, allergy).
- Follow-up cadence (explicit days) and objective response criteria (area ↓, exudate ↓, pain ↓, granulation ↑).
- Clear switch/stop rules for dressings and antimicrobials based on response or intolerance.
Disclaimer
- This is decision support, not a diagnosis or prescription. All medications/interventions require clinician review.
- Advise urgent evaluation for red flags (spreading erythema, fever, rapidly worsening pain, necrosis, malodor, suspected ischemia),
and tailor to local guidelines/formulary and patient comorbidities.
"""
# ---------- MedGemma-only text generator ----------
@_SPACES_GPU(enable_queue=True)
def vlm_generate(prompt, image_pil, model_id="unsloth/medgemma-4b-it-bnb-4bit",
max_new_tokens=1024, token=None):
"""
Simple helper: messages-style image+text → text using a 4-bit MedGemma pipeline.
- No explicit `device` argument (pipeline will auto-detect).
- Uses HF token from arg or HF_TOKEN env.
"""
import os, torch
from transformers import pipeline, BitsAndBytesConfig
# Unmask GPU if it was masked upstream (harmless on CPU too)
os.environ.pop("CUDA_VISIBLE_DEVICES", None)
hf_token = token or os.getenv("HF_TOKEN")
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
# 4-bit quantization config (required by the Unsloth 4-bit model)
bnb = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=dtype,
)
pipe = pipeline(
"image-text-to-text",
model=model_id,
model_kwargs={"quantization_config": bnb},
torch_dtype=dtype,
token=hf_token,
trust_remote_code=True,
)
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image_pil},
{"type": "text", "text": prompt},
],
}]
out = pipe(
text=messages,
max_new_tokens=int(max_new_tokens),
do_sample=False,
temperature=0.2,
return_full_text=False,
)
if isinstance(out, list) and out and isinstance(out[0], dict) and "generated_text" in out[0]:
return (out[0]["generated_text"] or "").strip()
return (str(out) or "").strip() or "⚠️ Empty response"
def generate_medgemma_report(
patient_info: str,
visual_results: dict,
guideline_context: str,
image_pil, # PIL.Image
max_new_tokens: int | None = None,
) -> str:
"""
Build SmartHeal prompt and generate with the Unsloth MedGemma 4-bit VLM.
No fallback to any other model.
"""
import os
if os.getenv("SMARTHEAL_ENABLE_VLM", "1") != "1":
return "⚠️ VLM disabled"
uprompt = SMARTHEAL_USER_PREFIX.format(
patient_info=patient_info,
wound_type=visual_results.get("wound_type", "Unknown"),
length_cm=visual_results.get("length_cm", 0),
breadth_cm=visual_results.get("breadth_cm", 0),
area_cm2=visual_results.get("surface_area_cm2", 0),
det_conf=float(visual_results.get("detection_confidence", 0.0)),
px_per_cm=visual_results.get("px_per_cm", "?"),
guideline_context=(guideline_context or "")[:900],
)
prompt = f"{SMARTHEAL_SYSTEM_PROMPT}\n\n{uprompt}\n\nAnswer:"
model_id = os.getenv("SMARTHEAL_MEDGEMMA_MODEL", "unsloth/medgemma-4b-it-bnb-4bit")
max_new_tokens = max_new_tokens or int(os.getenv("SMARTHEAL_VLM_MAX_TOKENS", "600"))
# Uses the simple messages-based VLM helper you added earlier (no device param).
return vlm_generate(
prompt=prompt,
image_pil=image_pil,
model_id=model_id,
max_new_tokens=max_new_tokens,
token=os.getenv("HF_TOKEN"),
)
# ---------- Input-shape helpers (avoid `.as_list()` on strings) ----------
def _shape_to_hw(shape) -> Tuple[Optional[int], Optional[int]]:
try:
if hasattr(shape, "as_list"):
shape = shape.as_list()
except Exception:
pass
if isinstance(shape, (tuple, list)):
if len(shape) == 4: # (None, H, W, C)
H, W = shape[1], shape[2]
elif len(shape) == 3: # (H, W, C)
H, W = shape[0], shape[1]
else:
return (None, None)
try: H = int(H) if (H is not None and str(H).lower() != "none") else None
except Exception: H = None
try: W = int(W) if (W is not None and str(W).lower() != "none") else None
except Exception: W = None
return (H, W)
return (None, None)
def _get_model_input_hw(model, default_hw: Tuple[int, int] = (224, 224)) -> Tuple[int, int]:
H, W = _shape_to_hw(getattr(model, "input_shape", None))
if H and W:
return H, W
try:
inputs = getattr(model, "inputs", None)
if inputs:
H, W = _shape_to_hw(inputs[0].shape)
if H and W:
return H, W
except Exception:
pass
try:
cfg = model.get_config() if hasattr(model, "get_config") else None
if isinstance(cfg, dict):
for layer in cfg.get("layers", []):
conf = (layer or {}).get("config", {})
cand = conf.get("batch_input_shape") or conf.get("batch_shape")
H, W = _shape_to_hw(cand)
if H and W:
return H, W
except Exception:
pass
logging.warning(f"Could not resolve model input shape; using default {default_hw}.")
return default_hw
# ---------- Initialize CPU models ----------
def load_yolo_model():
YOLO = _import_ultralytics()
with _no_cuda_env():
model = YOLO(YOLO_MODEL_PATH)
return model
def load_segmentation_model():
import os; os.environ.setdefault("KERAS_BACKEND","tensorflow")
import tensorflow as tf; tf.config.set_visible_devices([], "GPU")
import keras
return keras.models.load_model("src/segmentation_model.keras", compile=False)
def load_classification_pipeline():
pipe = _import_hf_cls()
return pipe("image-classification", model="Hemg/Wound-classification", token=HF_TOKEN, device="cpu")
def load_embedding_model():
Emb = _import_embeddings()
return Emb(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
def initialize_cpu_models() -> None:
if HF_TOKEN:
try:
HfApi, HfFolder = _import_hf_hub()
HfFolder.save_token(HF_TOKEN)
logging.info("✅ HF token set")
except Exception as e:
logging.warning(f"HF token save failed: {e}")
if "det" not in models_cache:
try:
models_cache["det"] = load_yolo_model()
logging.info("✅ YOLO loaded (CPU; CUDA masked in main)")
except Exception as e:
logging.error(f"YOLO load failed: {e}")
if "seg" not in models_cache:
try:
if os.path.exists(SEG_MODEL_PATH):
m = load_segmentation_model() # uses global path by default
models_cache["seg"] = m
th, tw = _get_model_input_hw(m, default_hw=(224, 224))
oshape = getattr(m, "output_shape", None)
logging.info(f"✅ Segmentation model loaded (CPU) | input_hw=({th},{tw}) output_shape={oshape}")
else:
models_cache["seg"] = None
logging.warning("Segmentation model file missing; skipping.")
except Exception as e:
models_cache["seg"] = None
logging.warning(f"Segmentation unavailable: {e}")
if "cls" not in models_cache:
try:
models_cache["cls"] = load_classification_pipeline()
logging.info("✅ Classifier loaded (CPU)")
except Exception as e:
models_cache["cls"] = None
logging.warning(f"Classifier unavailable: {e}")
if "embedding_model" not in models_cache:
try:
models_cache["embedding_model"] = load_embedding_model()
logging.info("✅ Embeddings loaded (CPU)")
except Exception as e:
models_cache["embedding_model"] = None
logging.warning(f"Embeddings unavailable: {e}")
def setup_knowledge_base() -> None:
if "vector_store" in knowledge_base_cache:
return
docs: List = []
try:
PyPDFLoader = _import_langchain_pdf()
for pdf in GUIDELINE_PDFS:
if os.path.exists(pdf):
try:
docs.extend(PyPDFLoader(pdf).load())
logging.info(f"Loaded PDF: {pdf}")
except Exception as e:
logging.warning(f"PDF load failed ({pdf}): {e}")
except Exception as e:
logging.warning(f"LangChain PDF loader unavailable: {e}")
if docs and models_cache.get("embedding_model"):
try:
from langchain.text_splitter import RecursiveCharacterTextSplitter
FAISS = _import_langchain_faiss()
chunks = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100).split_documents(docs)
knowledge_base_cache["vector_store"] = FAISS.from_documents(chunks, models_cache["embedding_model"])
logging.info(f"✅ Knowledge base ready ({len(chunks)} chunks)")
except Exception as e:
knowledge_base_cache["vector_store"] = None
logging.warning(f"KB build failed: {e}")
else:
knowledge_base_cache["vector_store"] = None
logging.warning("KB disabled (no docs or embeddings).")
initialize_cpu_models()
setup_knowledge_base()
# ---------- Calibration helpers ----------
def _exif_to_dict(pil_img: Image.Image) -> Dict[str, object]:
out = {}
try:
exif = pil_img.getexif()
if not exif:
return out
for k, v in exif.items():
tag = TAGS.get(k, k)
out[tag] = v
except Exception:
pass
return out
def _to_float(val) -> Optional[float]:
try:
if val is None:
return None
if isinstance(val, tuple) and len(val) == 2:
num, den = float(val[0]), float(val[1]) if float(val[1]) != 0 else 1.0
return num / den
return float(val)
except Exception:
return None
def _estimate_sensor_width_mm(f_mm: Optional[float], f35: Optional[float]) -> Optional[float]:
if f_mm and f35 and f35 > 0:
return 36.0 * f_mm / f35
return None
def estimate_px_per_cm_from_exif(pil_img: Image.Image, default_px_per_cm: float = DEFAULT_PX_PER_CM) -> Tuple[float, Dict]:
meta = {"used": "default", "f_mm": None, "f35": None, "sensor_w_mm": None, "distance_m": None}
try:
exif = _exif_to_dict(pil_img)
f_mm = _to_float(exif.get("FocalLength"))
f35 = _to_float(exif.get("FocalLengthIn35mmFilm") or exif.get("FocalLengthIn35mm"))
subj_dist_m = _to_float(exif.get("SubjectDistance"))
sensor_w_mm = _estimate_sensor_width_mm(f_mm, f35)
meta.update({"f_mm": f_mm, "f35": f35, "sensor_w_mm": sensor_w_mm, "distance_m": subj_dist_m})
if f_mm and sensor_w_mm and subj_dist_m and subj_dist_m > 0:
w_px = pil_img.width
field_w_mm = sensor_w_mm * (subj_dist_m * 1000.0) / f_mm
field_w_cm = field_w_mm / 10.0
px_per_cm = w_px / max(field_w_cm, 1e-6)
px_per_cm = float(np.clip(px_per_cm, PX_PER_CM_MIN, PX_PER_CM_MAX))
meta["used"] = "exif"
return px_per_cm, meta
return float(default_px_per_cm), meta
except Exception:
return float(default_px_per_cm), meta
# ---------- Segmentation helpers ----------
def _imagenet_norm(arr: np.ndarray) -> np.ndarray:
mean = np.array([123.675, 116.28, 103.53], dtype=np.float32)
std = np.array([58.395, 57.12, 57.375], dtype=np.float32)
return (arr.astype(np.float32) - mean) / std
def _preprocess_for_seg(bgr_roi: np.ndarray, target_hw: Tuple[int, int]) -> np.ndarray:
H, W = target_hw
resized = cv2.resize(bgr_roi, (W, H), interpolation=cv2.INTER_LINEAR)
if SEG_EXPECTS_RGB:
resized = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB)
if SEG_NORM.lower() == "imagenet":
x = _imagenet_norm(resized)
else:
x = resized.astype(np.float32) / 255.0
x = np.expand_dims(x, axis=0) # (1,H,W,3)
return x
def _to_prob(pred: np.ndarray) -> np.ndarray:
p = np.squeeze(pred)
pmin, pmax = float(p.min()), float(p.max())
if pmax > 1.0 or pmin < 0.0:
p = 1.0 / (1.0 + np.exp(-p))
return p.astype(np.float32)
# ---- Adaptive threshold + GrabCut grow ----
def _adaptive_prob_threshold(p: np.ndarray) -> float:
"""
Choose a threshold that avoids tiny blobs while not swallowing skin.
Try Otsu and the 90th percentile, clamp to [0.25, 0.65], pick by area heuristic.
"""
p01 = np.clip(p.astype(np.float32), 0, 1)
p255 = (p01 * 255).astype(np.uint8)
ret_otsu, _ = cv2.threshold(p255, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
thr_otsu = float(np.clip(ret_otsu / 255.0, 0.25, 0.65))
thr_pctl = float(np.clip(np.percentile(p01, 90), 0.25, 0.65))
def area_frac(thr: float) -> float:
return float((p01 >= thr).sum()) / float(p01.size)
af_otsu = area_frac(thr_otsu)
af_pctl = area_frac(thr_pctl)
def score(af: float) -> float:
target_low, target_high = 0.03, 0.10
if af < target_low: return abs(af - target_low) * 3.0
if af > target_high: return abs(af - target_high) * 1.5
return 0.0
return thr_otsu if score(af_otsu) <= score(af_pctl) else thr_pctl
def _grabcut_refine(bgr: np.ndarray, seed01: np.ndarray, iters: int = 3) -> np.ndarray:
"""Grow from a confident core into low-contrast margins."""
h, w = bgr.shape[:2]
gc = np.full((h, w), cv2.GC_PR_BGD, np.uint8)
k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
seed_dil = cv2.dilate(seed01, k, iterations=1)
gc[seed01.astype(bool)] = cv2.GC_PR_FGD
gc[seed_dil.astype(bool)] = cv2.GC_FGD
gc[0, :], gc[-1, :], gc[:, 0], gc[:, 1] = cv2.GC_BGD, cv2.GC_BGD, cv2.GC_BGD, cv2.GC_BGD
bgdModel = np.zeros((1, 65), np.float64)
fgdModel = np.zeros((1, 65), np.float64)
cv2.grabCut(bgr, gc, None, bgdModel, fgdModel, iters, cv2.GC_INIT_WITH_MASK)
return np.where((gc == cv2.GC_FGD) | (gc == cv2.GC_PR_FGD), 1, 0).astype(np.uint8)
def _fill_holes(mask01: np.ndarray) -> np.ndarray:
h, w = mask01.shape[:2]
ff = np.zeros((h + 2, w + 2), np.uint8)
m = (mask01 * 255).astype(np.uint8).copy()
cv2.floodFill(m, ff, (0, 0), 255)
m_inv = cv2.bitwise_not(m)
out = ((mask01 * 255) | m_inv) // 255
return out.astype(np.uint8)
def _clean_mask(mask01: np.ndarray) -> np.ndarray:
"""Open → Close → Fill holes → Largest component (no dilation)."""
mask01 = (mask01 > 0).astype(np.uint8)
k3 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
k5 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask01 = cv2.morphologyEx(mask01, cv2.MORPH_OPEN, k3, iterations=1)
mask01 = cv2.morphologyEx(mask01, cv2.MORPH_CLOSE, k5, iterations=1)
mask01 = _fill_holes(mask01)
# Keep largest component only
num, labels, stats, _ = cv2.connectedComponentsWithStats(mask01, 8)
if num > 1:
areas = stats[1:, cv2.CC_STAT_AREA]
if areas.size:
largest_idx = 1 + int(np.argmax(areas))
mask01 = (labels == largest_idx).astype(np.uint8)
return (mask01 > 0).astype(np.uint8)
# Global last debug dict (per-process)
_last_seg_debug: Dict[str, object] = {}
def segment_wound(image_bgr: np.ndarray, ts: str, out_dir: str) -> Tuple[np.ndarray, Dict[str, object]]:
"""
TF model → adaptive threshold on prob → GrabCut grow → cleanup.
Fallback: KMeans-Lab.
Returns (mask_uint8_0_255, debug_dict)
"""
debug = {"used": None, "reason": None, "positive_fraction": 0.0,
"thr": None, "heatmap_path": None, "roi_seen_by_model": None}
seg_model = models_cache.get("seg", None)
# --- Model path ---
if seg_model is not None:
try:
th, tw = _get_model_input_hw(seg_model, default_hw=(224, 224))
x = _preprocess_for_seg(image_bgr, (th, tw))
roi_seen_path = None
if SMARTHEAL_DEBUG:
roi_seen_path = os.path.join(out_dir, f"roi_for_seg_{ts}.png")
cv2.imwrite(roi_seen_path, image_bgr)
pred = seg_model.predict(x, verbose=0)
if isinstance(pred, (list, tuple)): pred = pred[0]
p = _to_prob(pred)
p = cv2.resize(p, (image_bgr.shape[1], image_bgr.shape[0]), interpolation=cv2.INTER_LINEAR)
heatmap_path = None
if SMARTHEAL_DEBUG:
hm = (np.clip(p, 0, 1) * 255).astype(np.uint8)
heat = cv2.applyColorMap(hm, cv2.COLORMAP_JET)
heatmap_path = os.path.join(out_dir, f"seg_pred_heatmap_{ts}.png")
cv2.imwrite(heatmap_path, heat)
thr = _adaptive_prob_threshold(p)
core01 = (p >= thr).astype(np.uint8)
core_frac = float(core01.sum()) / float(core01.size)
if core_frac < 0.005:
thr2 = max(thr - 0.10, 0.15)
core01 = (p >= thr2).astype(np.uint8)
thr = thr2
core_frac = float(core01.sum()) / float(core01.size)
if core01.any():
gc01 = _grabcut_refine(image_bgr, core01, iters=3)
mask01 = _clean_mask(gc01)
else:
mask01 = np.zeros(core01.shape, np.uint8)
pos_frac = float(mask01.sum()) / float(mask01.size)
logging.info(f"SegModel USED | thr={float(thr):.2f} core_frac={core_frac:.4f} final_frac={pos_frac:.4f}")
debug.update({
"used": "tf_model",
"reason": "ok",
"positive_fraction": pos_frac,
"thr": float(thr),
"heatmap_path": heatmap_path,
"roi_seen_by_model": roi_seen_path
})
return (mask01 * 255).astype(np.uint8), debug
except Exception as e:
logging.warning(f"⚠️ Segmentation model failed → fallback. Reason: {e}")
debug.update({"used": "fallback_kmeans", "reason": f"model_failed: {e}"})
# --- Fallback: KMeans in Lab (reddest cluster as wound) ---
Z = image_bgr.reshape((-1, 3)).astype(np.float32)
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
_, labels, centers = cv2.kmeans(Z, 2, None, criteria, 5, cv2.KMEANS_PP_CENTERS)
centers_u8 = centers.astype(np.uint8).reshape(1, 2, 3)
centers_lab = cv2.cvtColor(centers_u8, cv2.COLOR_BGR2LAB)[0]
wound_idx = int(np.argmax(centers_lab[:, 1])) # maximize a* (red)
mask01 = (labels.reshape(image_bgr.shape[:2]) == wound_idx).astype(np.uint8)
mask01 = _clean_mask(mask01)
pos_frac = float(mask01.sum()) / float(mask01.size)
logging.info(f"KMeans USED | final_frac={pos_frac:.4f}")
debug.update({
"used": "fallback_kmeans",
"reason": debug.get("reason") or "no_model",
"positive_fraction": pos_frac,
"thr": None
})
return (mask01 * 255).astype(np.uint8), debug
# ---------- Measurement + overlay helpers ----------
def largest_component_mask(binary01: np.ndarray, min_area_px: int = 50) -> np.ndarray:
num, labels, stats, _ = cv2.connectedComponentsWithStats(binary01.astype(np.uint8), connectivity=8)
if num <= 1:
return binary01.astype(np.uint8)
areas = stats[1:, cv2.CC_STAT_AREA]
if areas.size == 0 or areas.max() < min_area_px:
return binary01.astype(np.uint8)
largest_idx = 1 + int(np.argmax(areas))
return (labels == largest_idx).astype(np.uint8)
def measure_min_area_rect(mask01: np.ndarray, px_per_cm: float) -> Tuple[float, float, Tuple]:
contours, _ = cv2.findContours(mask01.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return 0.0, 0.0, (None, None)
cnt = max(contours, key=cv2.contourArea)
rect = cv2.minAreaRect(cnt)
(w_px, h_px) = rect[1]
length_px, breadth_px = (max(w_px, h_px), min(h_px, w_px))
length_cm = round(length_px / max(px_per_cm, 1e-6), 2)
breadth_cm = round(breadth_px / max(px_per_cm, 1e-6), 2)
box = cv2.boxPoints(rect).astype(int)
return length_cm, breadth_cm, (box, rect[0])
def area_cm2_from_contour(mask01: np.ndarray, px_per_cm: float) -> Tuple[float, Optional[np.ndarray]]:
"""Area from largest polygon (sub-pixel); returns (area_cm2, contour)."""
m = (mask01 > 0).astype(np.uint8)
contours, _ = cv2.findContours(m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return 0.0, None
cnt = max(contours, key=cv2.contourArea)
poly_area_px2 = float(cv2.contourArea(cnt))
area_cm2 = round(poly_area_px2 / (max(px_per_cm, 1e-6) ** 2), 2)
return area_cm2, cnt
def clamp_area_with_minrect(cnt: np.ndarray, px_per_cm: float, area_cm2_poly: float) -> float:
rect = cv2.minAreaRect(cnt)
(w_px, h_px) = rect[1]
rect_area_px2 = float(max(w_px, 0.0) * max(h_px, 0.0))
rect_area_cm2 = rect_area_px2 / (max(px_per_cm, 1e-6) ** 2)
return round(min(area_cm2_poly, rect_area_cm2 * 1.05), 2)
def draw_measurement_overlay(
base_bgr: np.ndarray,
mask01: np.ndarray,
rect_box: np.ndarray,
length_cm: float,
breadth_cm: float,
thickness: int = 2
) -> np.ndarray:
"""
1) Strong red mask overlay + white contour
2) Min-area rectangle
3) Double-headed arrows labeled Length/Width
"""
overlay = base_bgr.copy()
# Mask tint
mask255 = (mask01 * 255).astype(np.uint8)
mask3 = cv2.merge([mask255, mask255, mask255])
red = np.zeros_like(overlay); red[:] = (0, 0, 255)
alpha = 0.55
tinted = cv2.addWeighted(overlay, 1 - alpha, red, alpha, 0)
overlay = np.where(mask3 > 0, tinted, overlay)
# Contour
cnts, _ = cv2.findContours(mask255, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if cnts:
cv2.drawContours(overlay, cnts, -1, (255, 255, 255), 2)
if rect_box is not None:
cv2.polylines(overlay, [rect_box], True, (255, 255, 255), thickness)
pts = rect_box.reshape(-1, 2)
def midpoint(a, b): return (int((a[0] + b[0]) / 2), int((a[1] + b[1]) / 2))
e = [np.linalg.norm(pts[i] - pts[(i + 1) % 4]) for i in range(4)]
long_edge_idx = int(np.argmax(e))
mids = [midpoint(pts[i], pts[(i + 1) % 4]) for i in range(4)]
long_pair = (long_edge_idx, (long_edge_idx + 2) % 4)
short_pair = ((long_edge_idx + 1) % 4, (long_edge_idx + 3) % 4)
def draw_double_arrow(img, p1, p2):
cv2.arrowedLine(img, p1, p2, (0, 0, 0), thickness + 2, tipLength=0.05)
cv2.arrowedLine(img, p2, p1, (0, 0, 0), thickness + 2, tipLength=0.05)
cv2.arrowedLine(img, p1, p2, (255, 255, 255), thickness, tipLength=0.05)
cv2.arrowedLine(img, p2, p1, (255, 255, 255), thickness, tipLength=0.05)
def put_label(text, anchor):
org = (anchor[0] + 6, anchor[1] - 6)
cv2.putText(overlay, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 4, cv2.LINE_AA)
cv2.putText(overlay, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
draw_double_arrow(overlay, mids[long_pair[0]], mids[long_pair[1]])
draw_double_arrow(overlay, mids[short_pair[0]], mids[short_pair[1]])
put_label(f"Length: {length_cm:.2f} cm", mids[long_pair[0]])
put_label(f"Width: {breadth_cm:.2f} cm", mids[short_pair[0]])
return overlay
# ---------- AI PROCESSOR ----------
class AIProcessor:
def __init__(self):
self.models_cache = models_cache
self.knowledge_base_cache = knowledge_base_cache
self.uploads_dir = UPLOADS_DIR
self.dataset_id = DATASET_ID
self.hf_token = HF_TOKEN
def _ensure_analysis_dir(self) -> str:
out_dir = os.path.join(self.uploads_dir, "analysis")
os.makedirs(out_dir, exist_ok=True)
return out_dir
def perform_visual_analysis(self, image_pil: Image.Image) -> Dict:
"""
YOLO detect → crop ROI → segment_wound(ROI) → clean mask →
minAreaRect measurement (cm) using EXIF px/cm → save outputs.
"""
try:
px_per_cm, exif_meta = estimate_px_per_cm_from_exif(image_pil, DEFAULT_PX_PER_CM)
# Guardrails for calibration to avoid huge area blow-ups
px_per_cm = float(np.clip(px_per_cm, 20.0, 350.0))
if (exif_meta or {}).get("used") != "exif":
logging.warning(f"Calibration fallback used: px_per_cm={px_per_cm:.2f} (default). Prefer ruler/Aruco for accuracy.")
image_cv = cv2.cvtColor(np.array(image_pil.convert("RGB")), cv2.COLOR_RGB2BGR)
# --- Detection ---
det_model = self.models_cache.get("det")
if det_model is None:
raise RuntimeError("YOLO model not loaded")
# Force CPU inference and avoid CUDA touch
results = det_model.predict(image_cv, verbose=False, device="cpu")
if (not results) or (not getattr(results[0], "boxes", None)) or (len(results[0].boxes) == 0):
try:
import gradio as gr
raise gr.Error("No wound could be detected.")
except Exception:
raise RuntimeError("No wound could be detected.")
box = results[0].boxes[0].xyxy[0].cpu().numpy().astype(int)
x1, y1, x2, y2 = [int(v) for v in box]
x1, y1 = max(0, x1), max(0, y1)
x2, y2 = min(image_cv.shape[1], x2), min(image_cv.shape[0], y2)
roi = image_cv[y1:y2, x1:x2].copy()
if roi.size == 0:
try:
import gradio as gr
raise gr.Error("Detected ROI is empty.")
except Exception:
raise RuntimeError("Detected ROI is empty.")
out_dir = self._ensure_analysis_dir()
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
# --- Segmentation (model-first + KMeans fallback) ---
mask_u8_255, seg_debug = segment_wound(roi, ts, out_dir)
mask01 = (mask_u8_255 > 127).astype(np.uint8)
if mask01.any():
mask01 = _clean_mask(mask01)
logging.debug(f"Mask postproc: px_after={int(mask01.sum())}")
# --- Measurement (accurate & conservative) ---
if mask01.any():
length_cm, breadth_cm, (box_pts, _) = measure_min_area_rect(mask01, px_per_cm)
area_poly_cm2, largest_cnt = area_cm2_from_contour(mask01, px_per_cm)
if largest_cnt is not None:
surface_area_cm2 = clamp_area_with_minrect(largest_cnt, px_per_cm, area_poly_cm2)
else:
surface_area_cm2 = area_poly_cm2
anno_roi = draw_measurement_overlay(roi, mask01, box_pts, length_cm, breadth_cm)
segmentation_empty = False
else:
# Fallback if seg failed: use ROI dimensions
h_px = max(0, y2 - y1); w_px = max(0, x2 - x1)
length_cm = round(max(h_px, w_px) / px_per_cm, 2)
breadth_cm = round(min(h_px, w_px) / px_per_cm, 2)
surface_area_cm2 = round((h_px * w_px) / (px_per_cm ** 2), 2)
anno_roi = roi.copy()
cv2.rectangle(anno_roi, (2, 2), (anno_roi.shape[1]-3, anno_roi.shape[0]-3), (0, 0, 255), 3)
cv2.line(anno_roi, (0, 0), (anno_roi.shape[1]-1, anno_roi.shape[0]-1), (0, 0, 255), 2)
cv2.line(anno_roi, (anno_roi.shape[1]-1, 0), (0, anno_roi.shape[0]-1), (0, 0, 255), 2)
box_pts = None
segmentation_empty = True
# --- Skin tone estimation using ITA (Individual Typology Angle) ---
try:
# Convert ROI to LAB for skin tone measurement
# cv2.cvtColor returns LAB with L in [0,255], a,b in [0,255]; we convert to L* and b*
lab_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2LAB)
L_chan = lab_roi[:, :, 0] / 2.55 # scale to 0–100
b_chan = lab_roi[:, :, 2].astype(np.float32) - 128.0
# Define skin pixels as non-wound region or entire ROI if mask is empty
if mask01.any():
skin_mask = (mask01 == 0)
else:
skin_mask = np.ones_like(mask01, dtype=bool)
L_vals = L_chan[skin_mask]
b_vals = b_chan[skin_mask]
# Safeguard against empty arrays
if L_vals.size == 0 or b_vals.size == 0:
mean_L = float(np.mean(L_chan))
mean_b = float(np.mean(b_chan))
else:
mean_L = float(np.mean(L_vals))
mean_b = float(np.mean(b_vals))
# Compute ITA in degrees; use arctan2 to handle mean_b=0 gracefully
ita_deg = float(np.degrees(np.arctan2((mean_L - 50.0), mean_b))) if mean_b != 0 else 0.0
# Map ITA to Fitzpatrick skin tone categories (Del Bino ranges)
if ita_deg > 55:
skin_tone_label = "Type I (Very Light)"
elif 41 < ita_deg <= 55:
skin_tone_label = "Type II (Light)"
elif 28 < ita_deg <= 41:
skin_tone_label = "Type III (Intermediate)"
elif 10 < ita_deg <= 28:
skin_tone_label = "Type IV (Tan)"
elif -30 < ita_deg <= 10:
skin_tone_label = "Type V (Brown)"
else:
skin_tone_label = "Type VI (Dark)"
except Exception as e:
logging.warning(f"Skin tone estimation failed: {e}")
ita_deg = 0.0
skin_tone_label = "Unknown"
# --- Tissue classification (granulation, slough, necrotic) ---
try:
tissue_type = "Unknown"
if mask01.any():
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
mask_bool = mask01.astype(bool)
# Compute mean hue and value on wound region
h_vals = hsv_roi[:, :, 0][mask_bool]
s_vals = hsv_roi[:, :, 1][mask_bool]
v_vals = hsv_roi[:, :, 2][mask_bool]
# Safeguard against empty arrays
if h_vals.size > 0 and v_vals.size > 0:
mean_h = float(np.mean(h_vals))
mean_v = float(np.mean(v_vals))
# Necrotic (dark) if value is low
if mean_v < 50:
tissue_type = "Necrotic"
# Slough (yellow) if hue between ~10 and 30 on OpenCV scale (0–179)
elif 10 <= mean_h <= 30:
tissue_type = "Slough"
else:
tissue_type = "Granulation"
else:
tissue_type = "Unknown"
except Exception as e:
logging.warning(f"Tissue classification failed: {e}")
tissue_type = "Unknown"
# --- Save visualizations ---
original_path = os.path.join(out_dir, f"original_{ts}.png")
cv2.imwrite(original_path, image_cv)
det_vis = image_cv.copy()
cv2.rectangle(det_vis, (x1, y1), (x2, y2), (0, 255, 0), 2)
detection_path = os.path.join(out_dir, f"detection_{ts}.png")
cv2.imwrite(detection_path, det_vis)
roi_mask_path = os.path.join(out_dir, f"roi_mask_{ts}.png")
cv2.imwrite(roi_mask_path, (mask01 * 255).astype(np.uint8))
# ROI overlay (mask tint + contour, without arrows)
mask255 = (mask01 * 255).astype(np.uint8)
mask3 = cv2.merge([mask255, mask255, mask255])
red = np.zeros_like(roi); red[:] = (0, 0, 255)
alpha = 0.55
tinted = cv2.addWeighted(roi, 1 - alpha, red, alpha, 0)
if mask255.any():
roi_overlay = np.where(mask3 > 0, tinted, roi)
cnts, _ = cv2.findContours(mask255, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(roi_overlay, cnts, -1, (255, 255, 255), 2)
else:
roi_overlay = anno_roi
seg_full = image_cv.copy()
seg_full[y1:y2, x1:x2] = roi_overlay
segmentation_path = os.path.join(out_dir, f"segmentation_{ts}.png")
cv2.imwrite(segmentation_path, seg_full)
segmentation_roi_path = os.path.join(out_dir, f"segmentation_roi_{ts}.png")
cv2.imwrite(segmentation_roi_path, roi_overlay)
# Annotated (mask + arrows + labels) in full-frame
anno_full = image_cv.copy()
anno_full[y1:y2, x1:x2] = anno_roi
annotated_seg_path = os.path.join(out_dir, f"segmentation_annotated_{ts}.png")
cv2.imwrite(annotated_seg_path, anno_full)
# --- Optional classification ---
wound_type = "Unknown"
cls_pipe = self.models_cache.get("cls")
if cls_pipe is not None:
try:
preds = cls_pipe(Image.fromarray(cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)))
if preds:
wound_type = max(preds, key=lambda x: x.get("score", 0)).get("label", "Unknown")
except Exception as e:
logging.warning(f"Classification failed: {e}")
# Log end-of-seg summary
seg_summary = {
"seg_used": seg_debug.get("used"),
"seg_reason": seg_debug.get("reason"),
"positive_fraction": round(float(seg_debug.get("positive_fraction", 0.0)), 6),
"threshold": seg_debug.get("thr"),
"segmentation_empty": segmentation_empty,
"exif_px_per_cm": round(px_per_cm, 3),
}
_log_kv("SEG_SUMMARY", seg_summary)
return {
"wound_type": wound_type,
"length_cm": length_cm,
"breadth_cm": breadth_cm,
"surface_area_cm2": surface_area_cm2,
"px_per_cm": round(px_per_cm, 2),
"calibration_meta": exif_meta,
"detection_confidence": float(results[0].boxes.conf[0].cpu().item())
if getattr(results[0].boxes, "conf", None) is not None else 0.0,
"detection_image_path": detection_path,
"segmentation_image_path": annotated_seg_path,
"segmentation_annotated_path": annotated_seg_path,
"segmentation_roi_path": segmentation_roi_path,
"roi_mask_path": roi_mask_path,
"segmentation_empty": segmentation_empty,
"segmentation_debug": seg_debug,
"original_image_path": original_path,
# Additional AI insights
"skin_tone_label": skin_tone_label,
"ita_degrees": round(float(ita_deg), 2),
"tissue_type": tissue_type,
}
except Exception as e:
logging.error(f"Visual analysis failed: {e}", exc_info=True)
raise
# -------------------------------------------------------------------------
# Helper: refine measurements from a binary mask
# -------------------------------------------------------------------------
def _refine_metrics_from_mask(self, mask: np.ndarray, px_per_cm: float) -> Tuple[float, float, float]:
"""
Given a binary mask and pixel‑per‑centimeter calibration, compute length, breadth and area.
The mask should be a 2D numpy array of dtype uint8 or bool where 1 indicates wound pixels.
Parameters
----------
mask : np.ndarray
Binary mask of the wound region, shape (H, W). Non‑zero values denote wound pixels.
px_per_cm : float
Estimated pixels per centimeter calibration factor.
Returns
-------
tuple[float, float, float]
(length_cm, breadth_cm, area_cm2)
Notes
-----
This method approximates the wound measurements by computing the axis‑aligned bounding box
around all wound pixels and calculating the longer and shorter sides as length and width.
The surface area is computed as the number of wound pixels divided by (px_per_cm**2).
"""
if mask is None or mask.size == 0 or not np.any(mask):
return 0.0, 0.0, 0.0
# Ensure binary mask
mask01 = (mask > 0).astype(np.uint8)
# Find coordinates of wound pixels
coords = np.argwhere(mask01)
y_min, x_min = coords.min(axis=0)
y_max, x_max = coords.max(axis=0)
height_px = int(y_max - y_min + 1)
width_px = int(x_max - x_min + 1)
# Compute length as the larger dimension
length_cm = round(max(height_px, width_px) / float(px_per_cm), 2)
breadth_cm = round(min(height_px, width_px) / float(px_per_cm), 2)
area_px = int(mask01.sum())
area_cm2 = round(area_px / (float(px_per_cm) ** 2), 2)
return length_cm, breadth_cm, area_cm2
# ---------- Knowledge base + reporting ----------
def query_guidelines(self, query: str) -> str:
try:
vs = self.knowledge_base_cache.get("vector_store")
if not vs:
return "Knowledge base is not available."
retriever = vs.as_retriever(search_kwargs={"k": 5})
docs = retriever.invoke(query)
lines: List[str] = []
for d in docs:
src = (d.metadata or {}).get("source", "N/A")
txt = (d.page_content or "")[:300]
lines.append(f"Source: {src}\nContent: {txt}...")
return "\n\n".join(lines) if lines else "No relevant guideline snippets found."
except Exception as e:
logging.warning(f"Guidelines query failed: {e}")
return f"Guidelines query failed: {str(e)}"
def _generate_fallback_report(self, patient_info: str, visual_results: Dict, guideline_context: str) -> str:
return f"""# 🩺 SmartHeal AI - Comprehensive Wound Analysis Report
## 📋 Patient Information
{patient_info}
## 🔍 Visual Analysis Results
- **Wound Type**: {visual_results.get('wound_type', 'Unknown')}
- **Dimensions**: {visual_results.get('length_cm', 0)} cm × {visual_results.get('breadth_cm', 0)} cm
- **Surface Area**: {visual_results.get('surface_area_cm2', 0)} cm²
- **Detection Confidence**: {visual_results.get('detection_confidence', 0):.1%}
- **Calibration**: {visual_results.get('px_per_cm','?')} px/cm ({(visual_results.get('calibration_meta') or {}).get('used','default')})
## 📊 Analysis Images
- **Original**: {visual_results.get('original_image_path', 'N/A')}
- **Detection**: {visual_results.get('detection_image_path', 'N/A')}
- **Segmentation**: {visual_results.get('segmentation_image_path', 'N/A')}
- **Annotated**: {visual_results.get('segmentation_annotated_path', 'N/A')}
## 🎯 Clinical Summary
Automated analysis provides quantitative measurements; verify via clinical examination.
## 💊 Recommendations
- Cleanse wound gently; select dressing per exudate/infection risk
- Debride necrotic tissue if indicated (clinical decision)
- Document with serial photos and measurements
## 📅 Monitoring
- Daily in week 1, then every 2–3 days (or as indicated)
- Weekly progress review
## 📚 Guideline Context
{(guideline_context or '')[:800]}{"..." if guideline_context and len(guideline_context) > 800 else ''}
**Disclaimer:** Automated, for decision support only. Verify clinically.
"""
def generate_final_report(
self,
patient_info: str,
visual_results: Dict,
guideline_context: str,
image_pil: Image.Image,
max_new_tokens: Optional[int] = None,
) -> str:
try:
report = generate_medgemma_report(
patient_info, visual_results, guideline_context, image_pil, max_new_tokens
)
if report and report.strip() and not report.startswith(("⚠️", "❌")):
return report
logging.warning("VLM unavailable/invalid; using fallback.")
return self._generate_fallback_report(patient_info, visual_results, guideline_context)
except Exception as e:
logging.error(f"Report generation failed: {e}")
return self._generate_fallback_report(patient_info, visual_results, guideline_context)
def save_and_commit_image(self, image_pil: Image.Image) -> str:
try:
os.makedirs(self.uploads_dir, exist_ok=True)
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"{ts}.png"
path = os.path.join(self.uploads_dir, filename)
image_pil.convert("RGB").save(path)
logging.info(f"✅ Image saved locally: {path}")
if HF_TOKEN and DATASET_ID:
try:
HfApi, HfFolder = _import_hf_hub()
HfFolder.save_token(HF_TOKEN)
api = HfApi()
api.upload_file(
path_or_fileobj=path,
path_in_repo=f"images/{filename}",
repo_id=DATASET_ID,
repo_type="dataset",
token=HF_TOKEN,
commit_message=f"Upload wound image: {filename}",
)
logging.info("✅ Image committed to HF dataset")
except Exception as e:
logging.warning(f"HF upload failed: {e}")
return path
except Exception as e:
logging.error(f"Failed to save/commit image: {e}")
return ""
def full_analysis_pipeline(self, image_pil: Image.Image, questionnaire_data: Dict) -> Dict:
try:
saved_path = self.save_and_commit_image(image_pil)
visual_results = self.perform_visual_analysis(image_pil)
pi = questionnaire_data or {}
patient_info = (
f"Age: {pi.get('age','N/A')}, "
f"Diabetic: {pi.get('diabetic','N/A')}, "
f"Allergies: {pi.get('allergies','N/A')}, "
f"Date of Wound: {pi.get('date_of_injury','N/A')}, "
f"Professional Care: {pi.get('professional_care','N/A')}, "
f"Oozing/Bleeding: {pi.get('oozing_bleeding','N/A')}, "
f"Infection: {pi.get('infection','N/A')}, "
f"Moisture: {pi.get('moisture','N/A')}"
)
query = (
f"best practices for managing a {visual_results.get('wound_type','Unknown')} "
f"with moisture '{pi.get('moisture','unknown')}' and infection '{pi.get('infection','unknown')}' "
f"in a diabetic status '{pi.get('diabetic','unknown')}'"
)
guideline_context = self.query_guidelines(query)
report = self.generate_final_report(patient_info, visual_results, guideline_context, image_pil)
return {
"success": True,
"visual_analysis": visual_results,
"report": report,
"saved_image_path": saved_path,
"guideline_context": (guideline_context or "")[:500] + (
"..." if guideline_context and len(guideline_context) > 500 else ""
),
}
except Exception as e:
logging.error(f"Pipeline error: {e}")
return {
"success": False,
"error": str(e),
"visual_analysis": {},
"report": f"Analysis failed: {str(e)}",
"saved_image_path": None,
"guideline_context": "",
}
def analyze_wound(
self,
image,
questionnaire_data: Dict,
seg_adjust: float = 0.0,
manual_mask_path: Optional[str] = None,
) -> Dict:
"""
Analyze a wound image and return a dictionary with visual analysis, report and paths.
"""
try:
# Normalize input to PIL
if isinstance(image, str):
if not os.path.exists(image):
raise ValueError(f"Image file not found: {image}")
image_pil = Image.open(image)
elif isinstance(image, Image.Image):
image_pil = image
elif isinstance(image, np.ndarray):
image_pil = Image.fromarray(image)
else:
raise ValueError(f"Unsupported image type: {type(image)}")
# Run the standard pipeline
result = self.full_analysis_pipeline(image_pil, questionnaire_data or {})
# If neither manual mask nor adjustment specified, return as is
if (not manual_mask_path) and (abs(seg_adjust) < 1e-5):
return result
# Extract visual analysis and calibration from result
visual = result.get("visual_analysis", {}) or {}
px_per_cm = float(visual.get("px_per_cm", DEFAULT_PX_PER_CM))
# Attempt to load a mask
roi_mask_path = visual.get("roi_mask_path")
mask_img = None
if manual_mask_path:
try:
if os.path.exists(manual_mask_path):
mask_img = Image.open(manual_mask_path)
else:
logging.warning(f"Manual mask path does not exist: {manual_mask_path}")
except Exception as e:
logging.warning(f"Failed to load manual mask: {e}")
elif roi_mask_path and os.path.exists(roi_mask_path):
try:
mask_img = Image.open(roi_mask_path)
except Exception as e:
logging.warning(f"Failed to load ROI mask for adjustment: {e}")
if mask_img is not None:
mask_np = np.array(mask_img.convert("L"))
# If adjustment requested and no manual override
if (manual_mask_path is None) and (abs(seg_adjust) >= 1e-5):
iter_count = max(1, int(round(abs(seg_adjust) / 5)))
kernel = np.ones((3, 3), np.uint8)
try:
if seg_adjust > 0:
mask_np = cv2.dilate((mask_np > 127).astype(np.uint8), kernel, iterations=iter_count)
else:
mask_np = cv2.erode((mask_np > 127).astype(np.uint8), kernel, iterations=iter_count)
except Exception as e:
logging.warning(f"Segmentation adjustment failed: {e}")
else:
mask_np = (mask_np > 127).astype(np.uint8)
# Recalculate metrics
try:
length_cm, breadth_cm, area_cm2 = self._refine_metrics_from_mask(mask_np, px_per_cm)
visual["length_cm"] = length_cm
visual["breadth_cm"] = breadth_cm
visual["surface_area_cm2"] = area_cm2
visual["segmentation_refined"] = bool(manual_mask_path) or (abs(seg_adjust) >= 1e-5)
except Exception as e:
logging.warning(f"Failed to recalculate metrics from mask: {e}")
# ------- Manual overlay with wound-only red + ARROWS -------
if manual_mask_path:
try:
base_rgb = np.array(image_pil.convert("RGB"))
base_bgr = cv2.cvtColor(base_rgb, cv2.COLOR_RGB2BGR)
h, w = base_bgr.shape[:2]
if mask_np.shape[:2] != (h, w):
mask_np = cv2.resize(mask_np.astype(np.uint8), (w, h), interpolation=cv2.INTER_NEAREST)
# If mask seems inverted (covers majority), flip it so 1 = wound
wound_fraction = float(mask_np.mean())
if wound_fraction > 0.5:
mask_np = (1 - mask_np).astype(np.uint8)
# Output dir
out_dir = os.path.dirname(roi_mask_path or result.get("saved_image_path") or manual_mask_path) or os.getcwd()
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
# Save clean binary manual mask
manual_mask_save = os.path.join(out_dir, f"manual_mask_{ts}.png")
cv2.imwrite(manual_mask_save, (mask_np * 255).astype(np.uint8))
# Base red overlay on wound only
red = np.zeros_like(base_bgr); red[:] = (0, 0, 255)
alpha = 0.55
tinted = cv2.addWeighted(base_bgr, 1 - alpha, red, alpha, 0)
mask255 = (mask_np * 255).astype(np.uint8)
mask3 = cv2.merge([mask255, mask255, mask255])
overlay = np.where(mask3 > 0, tinted, base_bgr)
# ---- Draw double-headed arrows + labels for Length & Width ----
ys, xs = np.where(mask_np > 0)
if xs.size and ys.size:
x0, x1 = int(xs.min()), int(xs.max())
y0, y1 = int(ys.min()), int(ys.max())
w_px = x1 - x0 + 1
h_px = y1 - y0 + 1
# Compute cm from px (fallback-safe)
def _px_to_cm(px):
try:
return float(px) / float(px_per_cm if px_per_cm else DEFAULT_PX_PER_CM)
except Exception:
return float(px)
L_px = max(w_px, h_px)
W_px = min(w_px, h_px)
L_cm = _px_to_cm(L_px)
W_cm = _px_to_cm(W_px)
# Horizontal (center y) and vertical (center x) lines
cy = (y0 + y1) // 2
cx = (x0 + x1) // 2
h_start, h_end = (x0, cy), (x1, cy)
v_start, v_end = (cx, y0), (cx, y1)
# Helper: outlined arrowed line (black underlay + white line)
def draw_double_headed(img, p1, p2, color_fg=(255,255,255), color_bg=(0,0,0), t_fg=3, t_bg=6):
cv2.arrowedLine(img, p1, p2, color_bg, t_bg, tipLength=0.03)
cv2.arrowedLine(img, p2, p1, color_bg, t_bg, tipLength=0.03)
cv2.arrowedLine(img, p1, p2, color_fg, t_fg, tipLength=0.03)
cv2.arrowedLine(img, p2, p1, color_fg, t_fg, tipLength=0.03)
# Draw both arrows
draw_double_headed(overlay, h_start, h_end)
draw_double_headed(overlay, v_start, v_end)
# Helper: outlined text
def put_text_outlined(img, text, org, font=cv2.FONT_HERSHEY_SIMPLEX, scale=0.7,
color_fg=(255,255,255), color_bg=(0,0,0), t_fg=2, t_bg=4):
cv2.putText(img, text, org, font, scale, color_bg, t_bg, cv2.LINE_AA)
cv2.putText(img, text, org, font, scale, color_fg, t_fg, cv2.LINE_AA)
# Decide which is Length vs Width for labels
if w_px >= h_px:
# horizontal is length
put_text_outlined(overlay, f"Length: {L_cm:.2f} cm",
(x0, max(25, cy - 10)))
put_text_outlined(overlay, f"Width: {W_cm:.2f} cm",
(max(5, cx + 10), y0 + 25))
else:
# vertical is length
put_text_outlined(overlay, f"Length: {L_cm:.2f} cm",
(max(5, cx + 10), cy))
put_text_outlined(overlay, f"Width: {W_cm:.2f} cm",
(x0, max(25, cy - 10)))
# Save overlay with arrows
manual_overlay_path = os.path.join(out_dir, f"segmentation_manual_{ts}.png")
cv2.imwrite(manual_overlay_path, overlay)
# Update paths so UI shows the manual overlay (with arrows)
visual["roi_mask_path"] = manual_mask_save
visual["segmentation_image_path"] = manual_overlay_path
visual["segmentation_roi_path"] = manual_overlay_path
visual["segmentation_annotated_path"] = manual_overlay_path
visual["segmentation_refined_type"] = "manual"
visual["manual_mask_used"] = True
except Exception as e:
logging.warning(f"Failed to generate manual segmentation overlay: {e}")
# ----------------------------------------------------------
result["visual_analysis"] = visual
return result
except Exception as e:
logging.error(f"Wound analysis error: {e}")
return {
"success": False,
"error": str(e),
"visual_analysis": {},
"report": f"Analysis initialization failed: {str(e)}",
"saved_image_path": None,
"guideline_context": "",
}