SmartHeal-Agentic-AI / src /ui_components_original.py
SmartHeal's picture
Update src/ui_components_original.py
a2b08bf verified
raw
history blame
65.9 kB
import gradio as gr
import os
import re
import logging
import tempfile
import shutil
import base64
from datetime import datetime
from PIL import Image
import html # Import the html module for escaping
from .patient_history import PatientHistoryManager, ReportGenerator
def pil_to_base64(pil_image):
"""Convert PIL Image to base64 data URL"""
import io
import base64
from PIL import Image
if pil_image is None:
return None
try:
# Convert image to RGB if it's not already
if pil_image.mode != 'RGB':
pil_image = pil_image.convert('RGB')
buffer = io.BytesIO()
pil_image.save(buffer, format='PNG')
img_str = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
except Exception as e:
logging.error(f"Error converting PIL image to base64: {e}")
return None
class UIComponents:
def __init__(self, auth_manager, database_manager, wound_analyzer):
self.auth_manager = auth_manager
self.database_manager = database_manager
self.wound_analyzer = wound_analyzer
self.current_user = {}
self.patient_history_manager = PatientHistoryManager(database_manager)
self.report_generator = ReportGenerator()
# Ensure uploads directory exists
if not os.path.exists("uploads"):
os.makedirs("uploads", exist_ok=True)
def image_to_base64(self, image_path):
"""Convert image to base64 data URL for embedding in HTML"""
if not image_path or not os.path.exists(image_path):
return None
try:
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
# Determine image format
image_ext = os.path.splitext(image_path)[1].lower()
if image_ext in [".jpg", ".jpeg"]:
mime_type = "image/jpeg"
elif image_ext == ".png":
mime_type = "image/png"
elif image_ext == ".gif":
mime_type = "image/gif"
else:
mime_type = "image/png" # Default to PNG
return f"data:{mime_type};base64,{encoded_string}"
except Exception as e:
logging.error(f"Error converting image to base64: {e}")
return None
def markdown_to_html(self, markdown_text):
"""Convert markdown text to proper HTML format with enhanced support"""
if not markdown_text:
return ""
# Escape HTML entities first to prevent issues with special characters
html_text = html.escape(markdown_text)
# Convert headers
html_text = re.sub(r"^### (.*?)$", r"<h3>\1</h3>", html_text, flags=re.MULTILINE)
html_text = re.sub(r"^## (.*?)$", r"<h2>\1</h2>", html_text, flags=re.MULTILINE)
html_text = re.sub(r"^# (.*?)$", r"<h1>\1</h1>", html_text, flags=re.MULTILINE)
# Convert bold text
html_text = re.sub(r"\*\*(.*?)\*\*", r"<strong>\1</strong>", html_text)
# Convert italic text
html_text = re.sub(r"\*(.*?)\*", r"<em>\1</em>", html_text)
# Convert code blocks (triple backticks)
html_text = re.sub(r"```(.*?)```", r"<pre><code>\1</code></pre>", html_text, flags=re.DOTALL)
# Convert inline code (single backticks)
html_text = re.sub(r"`(.*?)`", r"<code>\1</code>", html_text)
# Convert blockquotes
html_text = re.sub(r"^> (.*?)$", r"<blockquote>\1</blockquote>", html_text, flags=re.MULTILINE)
# Convert links
html_text = re.sub(r"\[(.*?)\]\((.*?)\)", r"<a href=\"\2\">\1</a>", html_text)
# Convert horizontal rules
html_text = re.sub(r"^\s*[-*_]{3,}\s*$", r"<hr>", html_text, flags=re.MULTILINE)
# Convert bullet points and handle nested lists (simplified for example)
lines = html_text.split("\n")
in_list = False
result_lines = []
for line in lines:
stripped = line.strip()
if stripped.startswith("- "):
if not in_list:
result_lines.append("<ul>")
in_list = True
result_lines.append(f"<li>{stripped[2:]}</li>")
else:
if in_list:
result_lines.append("</ul>")
in_list = False
if stripped:
result_lines.append(f"<p>{stripped}</p>")
else:
result_lines.append("<br>")
if in_list:
result_lines.append("</ul>")
return "\n".join(result_lines)
def get_organizations_dropdown(self):
"""Get list of organizations for dropdown"""
try:
organizations = self.database_manager.get_organizations()
return [f"{org['org_name']} - {org['location']}" for org in organizations]
except Exception as e:
logging.error(f"Error getting organizations: {e}")
return ["Default Hospital - Location"]
def get_custom_css(self):
return """
/* =================== ORIGINAL SMARTHEAL CSS =================== */
/* Global Styling */
body, html {
margin: 0 !important;
padding: 0 !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', sans-serif !important;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%) !important;
color: #1A202C !important;
line-height: 1.6 !important;
}
/* Professional Header with Logo */
.medical-header {
background: linear-gradient(135deg, #3182ce 0%, #2c5aa0 100%) !important;
color: white !important;
padding: 32px 40px !important;
border-radius: 20px 20px 0 0 !important;
display: flex !important;
align-items: center !important;
justify-content: center !important;
margin-bottom: 0 !important;
box-shadow: 0 10px 40px rgba(49, 130, 206, 0.3) !important;
border: none !important;
position: relative !important;
overflow: hidden !important;
}
.medical-header::before {
content: '' !important;
position: absolute !important;
top: 0 !important;
left: 0 !important;
right: 0 !important;
bottom: 0 !important;
background: url('data:image/svg+xml,<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 100 100"><defs><pattern id="grid" width="10" height="10" patternUnits="userSpaceOnUse"><path d="M 10 0 L 0 0 0 10" fill="none" stroke="rgba(255,255,255,0.1)" stroke-width="0.5"/></pattern></defs><rect width="100" height="100" fill="url(%23grid)" /></svg>') !important;
opacity: 0.1 !important;
z-index: 1 !important;
}
.medical-header > * {
position: relative !important;
z-index: 2 !important;
}
.logo {
width: 80px !important;
height: 80px !important;
border-radius: 50% !important;
margin-right: 24px !important;
border: 4px solid rgba(255, 255, 255, 0.3) !important;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.2) !important;
background: white !important;
padding: 4px !important;
}
.medical-header h1 {
font-size: 3.5rem !important;
font-weight: 800 !important;
margin: 0 !important;
text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.3) !important;
background: linear-gradient(45deg, #ffffff, #f8f9fa) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
filter: drop-shadow(2px 2px 4px rgba(0, 0, 0, 0.3)) !important;
}
.medical-header p {
font-size: 1.3rem !important;
margin: 8px 0 0 0 !important;
opacity: 0.95 !important;
font-weight: 500 !important;
text-shadow: 1px 1px 4px rgba(0, 0, 0, 0.2) !important;
}
/* Enhanced Form Styling */
.gr-form {
background: linear-gradient(145deg, #ffffff 0%, #f8f9fa 100%) !important;
border-radius: 20px !important;
padding: 32px !important;
margin: 24px 0 !important;
box-shadow: 0 16px 48px rgba(0, 0, 0, 0.1) !important;
border: 1px solid rgba(229, 62, 62, 0.1) !important;
backdrop-filter: blur(10px) !important;
position: relative !important;
overflow: hidden !important;
}
.gr-form::before {
content: '' !important;
position: absolute !important;
top: 0 !important;
left: 0 !important;
right: 0 !important;
height: 4px !important;
background: linear-gradient(90deg, #e53e3e 0%, #f56565 50%, #e53e3e 100%) !important;
z-index: 1 !important;
}
/* Professional Input Fields */
.gr-textbox, .gr-number {
border-radius: 12px !important;
border: 2px solid #E2E8F0 !important;
background: #FFFFFF !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05) !important;
font-size: 1rem !important;
color: #1A202C !important;
padding: 16px 20px !important;
}
.gr-textbox:focus,
.gr-number:focus,
.gr-textbox input:focus,
.gr-number input:focus {
border-color: #E53E3E !important;
box-shadow: 0 0 0 4px rgba(229, 62, 62, 0.1) !important;
background: #FFFFFF !important;
outline: none !important;
transform: translateY(-1px) !important;
}
.gr-textbox input,
.gr-number input {
background: transparent !important;
border: none !important;
outline: none !important;
color: #1A202C !important;
font-size: 1rem !important;
width: 100% !important;
padding: 0 !important;
}
.gr-textbox label,
.gr-number label,
.gr-dropdown label,
.gr-radio label,
.gr-checkbox label {
font-weight: 600 !important;
color: #2D3748 !important;
font-size: 1rem !important;
margin-bottom: 8px !important;
display: block !important;
}
/* Enhanced Button Styling */
button.gr-button,
button.gr-button-primary {
background: linear-gradient(135deg, #E53E3E 0%, #C53030 100%) !important;
color: #FFFFFF !important;
border: none !important;
border-radius: 12px !important;
font-weight: 700 !important;
padding: 16px 32px !important;
font-size: 1.1rem !important;
letter-spacing: 0.5px !important;
text-align: center !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
box-shadow: 0 4px 16px rgba(229, 62, 62, 0.3) !important;
position: relative !important;
overflow: hidden !important;
text-transform: uppercase !important;
cursor: pointer !important;
}
button.gr-button::before {
content: '' !important;
position: absolute !important;
top: 0 !important;
left: -100% !important;
width: 100% !important;
height: 100% !important;
background: linear-gradient(90deg, transparent, rgba(255,255,255,0.4), transparent) !important;
transition: left 0.5s !important;
}
button.gr-button:hover::before {
left: 100% !important;
}
button.gr-button:hover,
button.gr-button-primary:hover {
background: linear-gradient(135deg, #C53030 0%, #9C2A2A 100%) !important;
box-shadow: 0 8px 32px rgba(229, 62, 62, 0.4) !important;
transform: translateY(-3px) !important;
}
button.gr-button:active,
button.gr-button-primary:active {
transform: translateY(-1px) !important;
box-shadow: 0 4px 16px rgba(229, 62, 62, 0.5) !important;
}
button.gr-button:disabled {
background: #A0AEC0 !important;
color: #718096 !important;
cursor: not-allowed !important;
box-shadow: none !important;
transform: none !important;
}
/* Professional Status Messages */
.status-success {
background: linear-gradient(135deg, #F0FFF4 0%, #E6FFFA 100%) !important;
border: 2px solid #38A169 !important;
color: #22543D !important;
padding: 20px 24px !important;
border-radius: 16px !important;
font-weight: 600 !important;
margin: 16px 0 !important;
box-shadow: 0 8px 24px rgba(56, 161, 105, 0.2) !important;
backdrop-filter: blur(10px) !important;
}
.status-error {
background: linear-gradient(135deg, #FFF5F5 0%, #FED7D7 100%) !important;
border: 2px solid #E53E3E !important;
color: #742A2A !important;
padding: 20px 24px !important;
border-radius: 16px !important;
font-weight: 600 !important;
margin: 16px 0 !important;
box-shadow: 0 8px 24px rgba(229, 62, 62, 0.2) !important;
backdrop-filter: blur(10px) !important;
}
.status-warning {
background: linear-gradient(135deg, #FFFAF0 0%, #FEEBC8 100%) !important;
border: 2px solid #DD6B20 !important;
color: #9C4221 !important;
padding: 20px 24px !important;
border-radius: 16px !important;
font-weight: 600 !important;
margin: 16px 0 !important;
box-shadow: 0 8px 24px rgba(221, 107, 32, 0.2) !important;
backdrop-filter: blur(10px) !important;
}
/* Professional Card Layout */
.medical-card {
background: linear-gradient(145deg, #FFFFFF 0%, #F7FAFC 100%) !important;
border-radius: 20px !important;
padding: 32px !important;
margin: 24px 0 !important;
box-shadow: 0 16px 48px rgba(0, 0, 0, 0.08) !important;
border: 1px solid rgba(229, 62, 62, 0.1) !important;
backdrop-filter: blur(10px) !important;
position: relative !important;
overflow: hidden !important;
}
.medical-card::before {
content: '' !important;
position: absolute !important;
top: 0 !important;
left: 0 !important;
right: 0 !important;
height: 4px !important;
background: linear-gradient(90deg, #E53E3E 0%, #F56565 50%, #E53E3E 100%) !important;
}
.medical-card-title {
font-size: 1.75rem !important;
font-weight: 700 !important;
color: #1A202C !important;
margin-bottom: 24px !important;
padding-bottom: 16px !important;
border-bottom: 2px solid #E53E3E !important;
text-align: center !important;
position: relative !important;
}
.medical-card-title::after {
content: '' !important;
position: absolute !important;
bottom: -2px !important;
left: 50% !important;
transform: translateX(-50%) !important;
width: 60px !important;
height: 4px !important;
background: linear-gradient(90deg, transparent, #E53E3E, transparent) !important;
border-radius: 2px !important;
}
/* Professional Dropdown Styling */
.gr-dropdown {
border-radius: 12px !important;
border: 2px solid #E2E8F0 !important;
background: #FFFFFF !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05) !important;
}
.gr-dropdown:focus,
.gr-dropdown select:focus {
border-color: #E53E3E !important;
box-shadow: 0 0 0 4px rgba(229, 62, 62, 0.1) !important;
outline: none !important;
}
.gr-dropdown select {
background: transparent !important;
border: none !important;
color: #1A202C !important;
font-size: 1rem !important;
padding: 16px 20px !important;
border-radius: 12px !important;
}
/* Radio button styling */
.gr-radio input[type="radio"] {
margin-right: 8px !important;
transform: scale(1.2) !important;
}
.gr-radio label {
display: flex !important;
align-items: center !important;
padding: 8px 0 !important;
font-size: 1rem !important;
line-height: 1.5 !important;
cursor: pointer !important;
color: #1A202C !important;
}
/* Tab styling */
.gr-tab {
color: #1A202C !important;
font-weight: 500 !important;
font-size: 1rem !important;
padding: 12px 20px !important;
background-color: #F7FAFC !important;
}
.gr-tab.selected {
color: #E53E3E !important;
font-weight: 600 !important;
border-bottom: 2px solid #E53E3E !important;
background-color: #FFFFFF !important;
}
/* Image upload styling */
.gr-image {
border: 3px dashed #CBD5E0 !important;
border-radius: 16px !important;
background-color: #F7FAFC !important;
transition: all 0.2s ease !important;
}
.gr-image:hover {
border-color: #E53E3E !important;
background-color: #FFF5F5 !important;
}
/* Analyze button special styling */
#analyze-btn {
background: linear-gradient(135deg, #1B5CF3 0%, #1E3A8A 100%) !important;
color: #FFFFFF !important;
border: none !important;
border-radius: 8px !important;
font-weight: 700 !important;
padding: 14px 28px !important;
font-size: 1.1rem !important;
letter-spacing: 0.5px !important;
text-align: center !important;
transition: all 0.2s ease-in-out !important;
}
#analyze-btn:hover {
background: linear-gradient(135deg, #174ea6 0%, #123b82 100%) !important;
box-shadow: 0 4px 14px rgba(27, 95, 193, 0.4) !important;
transform: translateY(-2px) !important;
}
#analyze-btn:disabled {
background: #A0AEC0 !important;
color: #1A202C !important;
cursor: not-allowed !important;
box-shadow: none !important;
transform: none !important;
}
/* Image gallery styling for better visualization */
.image-gallery {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
margin: 20px 0;
}
.image-item {
background: #f8f9fa;
border-radius: 12px;
padding: 15px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
text-align: center;
}
.image-item img {
max-width: 100%;
height: auto;
border-radius: 8px;
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
}
.image-item h4 {
margin: 15px 0 5px 0;
color: #2d3748;
font-weight: 600;
}
.image-item p {
margin: 0;
color: #666;
font-size: 0.9em;
}
/* Responsive design */
@media (max-width: 768px) {
.medical-header {
padding: 16px !important;
text-align: center !important;
}
.medical-header h1 {
font-size: 2rem !important;
}
.logo {
width: 48px !important;
height: 48px !important;
margin-right: 16px !important;
}
.gr-form {
padding: 16px !important;
margin: 8px 0 !important;
}
button.gr-button,
button.gr-button-primary {
padding: 14px 20px !important;
font-size: 14px !important;
}
.image-gallery {
grid-template-columns: 1fr;
}
}
"""
def create_interface(self):
"""Create the main Gradio interface with original styling and base64 image embedding"""
with gr.Blocks(css=self.get_custom_css(), title="SmartHeal - AI Wound Care Assistant") as app:
# Header with SmartHeal logo (from original)
logo_url = "https://scontent.fccu31-2.fna.fbcdn.net/v/t39.30808-6/275933824_102121829111657_3325198727201325354_n.jpg?_nc_cat=104&ccb=1-7&_nc_sid=6ee11a&_nc_ohc=45krrEUpcSUQ7kNvwGVdiMW&_nc_oc=AdkTdxEC_TkYGiyDkEtTJZ_DFZELW17XKFmWpswmFqGB7JSdvTyWtnrQyLS0USngEiY&_nc_zt=23&_nc_ht=scontent.fccu31-2.fna&_nc_gid=ufAA4Hj5gTRwON5POYzz0Q&oh=00_AfW1-jLEN5RGeggqOvGgEaK_gdg0EDgxf_VhKbZwFLUO0Q&oe=6897A98B"
gr.HTML(f"""
<div class="medical-header">
<img src="{logo_url}" class="logo" alt="SmartHeal Logo">
<div>
<h1>SmartHeal AI</h1>
<p>Advanced Wound Care Analysis & Clinical Support System</p>
</div>
</div>
""")
# Professional disclaimer (from original)
gr.HTML("""
<div style="border: 2px solid #FF6B6B; background-color: #FFE5E5; padding: 15px; border-radius: 12px; margin: 10px 0;">
<h3 style="color: #D63031; margin-top: 0;">⚠️ IMPORTANT DISCLAIMER</h3>
<p><strong>This model is for testing and educational purposes only and is NOT a replacement for professional medical advice.</strong></p>
<p>Information generated may be inaccurate. Always consult a qualified healthcare provider for medical concerns. This AI system uses chain-of-thought reasoning to show its decision-making process, but should never be used as the sole basis for clinical decisions.</p>
<p><em>Uploaded images may be stored and used for testing and model improvement purposes.</em></p>
</div>
""")
# Main interface with conditional visibility (ORIGINAL STRUCTURE)
with gr.Row():
# Professional Authentication Panel (visible when not logged in)
with gr.Column(visible=True) as auth_panel:
gr.HTML("""
<div style="text-align: center; margin: 40px 0;">
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 40px; border-radius: 20px; box-shadow: 0 20px 40px rgba(0,0,0,0.1); max-width: 500px; margin: 0 auto;">
<h2 style="color: white; font-size: 2.5rem; margin-bottom: 10px; font-weight: 700;">🏥 SmartHeal Access</h2>
<p style="color: rgba(255,255,255,0.9); font-size: 1.1rem; margin-bottom: 30px;">Secure Healthcare Professional Portal</p>
</div>
</div>
""")
with gr.Tabs():
with gr.Tab("🔐 Professional Login") as login_tab:
gr.HTML("""
<div style="background: white; padding: 40px; border-radius: 16px; box-shadow: 0 8px 32px rgba(0,0,0,0.1); margin: 20px auto; max-width: 450px;">
<div style="text-align: center; margin-bottom: 30px;">
<h3 style="color: #2d3748; font-size: 1.8rem; margin-bottom: 8px;">Welcome Back</h3>
<p style="color: #718096; font-size: 1rem;">Access your professional dashboard</p>
</div>
</div>
""")
login_username = gr.Textbox(
label="👤 Username",
placeholder="Enter your username"
)
login_password = gr.Textbox(
label="🔒 Password",
type="password",
placeholder="Enter your secure password"
)
login_btn = gr.Button(
"🚀 Sign In to Dashboard",
variant="primary",
size="lg"
)
login_status = gr.HTML(
value="<div style='text-align: center; color: #718096; font-size: 0.9rem; margin-top: 15px;'>Enter your credentials to access the system</div>"
)
with gr.Tab("📝 New Registration") as signup_tab:
gr.HTML("""
<div style="background: white; padding: 40px; border-radius: 16px; box-shadow: 0 8px 32px rgba(0,0,0,0.1); margin: 20px auto; max-width: 450px;">
<div style="text-align: center; margin-bottom: 30px;">
<h3 style="color: #2d3748; font-size: 1.8rem; margin-bottom: 8px;">Create Account</h3>
<p style="color: #718096; font-size: 1rem;">Join the SmartHeal healthcare network</p>
</div>
</div>
""")
signup_username = gr.Textbox(
label="👤 Username",
placeholder="Choose a unique username"
)
signup_email = gr.Textbox(
label="📧 Email Address",
placeholder="Enter your professional email"
)
signup_password = gr.Textbox(
label="🔒 Password",
type="password",
placeholder="Create a strong password"
)
signup_name = gr.Textbox(
label="👨‍⚕️ Full Name",
placeholder="Enter your full professional name"
)
signup_role = gr.Radio(
["practitioner", "organization"],
label="🏥 Account Type",
value="practitioner"
)
# Organization-specific fields
with gr.Group(visible=False) as org_fields:
gr.HTML("<h4 style='color: #2d3748; margin: 20px 0 10px 0;'>🏢 Organization Details</h4>")
org_name = gr.Textbox(label="Organization Name", placeholder="Enter organization name")
phone = gr.Textbox(label="Phone Number", placeholder="Enter contact number")
country_code = gr.Textbox(label="Country Code", placeholder="e.g., +1, +44")
department = gr.Textbox(label="Department", placeholder="e.g., Emergency, Surgery")
location = gr.Textbox(label="Location", placeholder="City, State/Province, Country")
# Practitioner-specific fields
with gr.Group(visible=True) as prac_fields:
gr.HTML("<h4 style='color: #2d3748; margin: 20px 0 10px 0;'>🏥 Affiliation</h4>")
organization_dropdown = gr.Dropdown(
choices=self.get_organizations_dropdown(),
label="Select Your Organization"
)
signup_btn = gr.Button(
"✨ Create Professional Account",
variant="primary",
size="lg"
)
signup_status = gr.HTML(
value="<div style='text-align: center; color: #718096; font-size: 0.9rem; margin-top: 15px;'>Fill in your details to create an account</div>"
)
# Practitioner Interface (hidden initially)
with gr.Column(visible=False) as practitioner_panel:
gr.HTML('<div class="medical-card-title">👩‍⚕️ Practitioner Dashboard</div>')
user_info = gr.HTML("")
logout_btn_prac = gr.Button("🚪 Logout", variant="secondary", elem_classes=["logout-btn"])
# Main tabs for different functions
with gr.Tabs():
# WOUND ANALYSIS TAB
with gr.Tab("🔬 Wound Analysis"):
with gr.Row():
with gr.Column(scale=1):
gr.HTML("<h3>📋 Patient Information</h3>")
patient_name = gr.Textbox(label="Patient Name", placeholder="Enter patient's full name")
patient_age = gr.Number(label="Age", value=30, minimum=0, maximum=120)
patient_gender = gr.Dropdown(
choices=["Male", "Female", "Other"],
label="Gender",
value="Male"
)
gr.HTML("<h3>🩹 Wound Information</h3>")
wound_location = gr.Textbox(label="Wound Location", placeholder="e.g., Left ankle, Right arm")
wound_duration = gr.Textbox(label="Wound Duration", placeholder="e.g., 2 weeks, 1 month")
pain_level = gr.Slider(
minimum=0, maximum=10, value=5, step=1,
label="Pain Level (0-10)"
)
gr.HTML("<h3>⚕️ Clinical Assessment</h3>")
moisture_level = gr.Dropdown(
choices=["Dry", "Moist", "Wet", "Saturated"],
label="Moisture Level",
value="Moist"
)
infection_signs = gr.Dropdown(
choices=["None", "Mild", "Moderate", "Severe"],
label="Signs of Infection",
value="None"
)
diabetic_status = gr.Dropdown(
choices=["Non-diabetic", "Type 1", "Type 2", "Gestational"],
label="Diabetic Status",
value="Non-diabetic"
)
with gr.Column(scale=1):
gr.HTML("<h3>📸 Wound Image Upload</h3>")
wound_image = gr.Image(
label="Upload Wound Image",
type="filepath",
elem_classes=["image-upload"]
)
gr.HTML("<h3>📝 Medical History</h3>")
previous_treatment = gr.Textbox(
label="Previous Treatment",
placeholder="Describe any previous treatments...",
lines=3
)
medical_history = gr.Textbox(
label="Medical History",
placeholder="Relevant medical conditions, surgeries, etc...",
lines=3
)
medications = gr.Textbox(
label="Current Medications",
placeholder="List current medications...",
lines=2
)
allergies = gr.Textbox(
label="Known Allergies",
placeholder="List any known allergies...",
lines=2
)
additional_notes = gr.Textbox(
label="Additional Notes",
placeholder="Any additional clinical observations...",
lines=3
)
analyze_btn = gr.Button("🔬 Analyze Wound", variant="primary", size="lg", elem_id="analyze-btn")
analysis_output = gr.HTML("")
# PATIENT HISTORY TAB
with gr.Tab("📋 Patient History"):
with gr.Row():
with gr.Column(scale=2):
gr.HTML("<h3>📊 Patient History Dashboard</h3>")
history_btn = gr.Button("📋 Load Patient History", variant="primary")
patient_history_output = gr.HTML("")
with gr.Column(scale=1):
gr.HTML("<h3>🔍 Search Specific Patient</h3>")
search_patient_name = gr.Textbox(
label="Patient Name",
placeholder="Enter patient name to search..."
)
search_patient_btn = gr.Button("🔍 Search Patient History", variant="secondary")
specific_patient_output = gr.HTML("")
# Event handlers
def handle_login(username, password):
user_data = self.auth_manager.authenticate_user(username, password)
if user_data:
self.current_user = user_data
return {
auth_panel: gr.update(visible=False),
practitioner_panel: gr.update(visible=True),
login_status: "<div class='status-success'>✅ Login successful! Welcome to SmartHeal</div>"
}
else:
return {
login_status: "<div class='status-error'>❌ Invalid credentials. Please try again.</div>"
}
def handle_signup(username, email, password, name, role, org_name, phone, country_code, department, location, organization_dropdown):
try:
if role == "organization":
org_data = {
'org_name': org_name,
'phone': phone,
'country_code': country_code,
'department': department,
'location': location
}
org_id = self.database_manager.create_organization(org_data)
user_data = {
'username': username,
'email': email,
'password': password,
'name': name,
'role': role,
'org_id': org_id
}
else:
# Extract org_id from dropdown selection
org_id = 1 # Default organization for now
user_data = {
'username': username,
'email': email,
'password': password,
'name': name,
'role': role,
'org_id': org_id
}
if self.auth_manager.create_user(user_data):
return {
signup_status: "<div class='status-success'>✅ Account created successfully! Please login.</div>"
}
else:
return {
signup_status: "<div class='status-error'>❌ Failed to create account. Username or email may already exist.</div>"
}
except Exception as e:
return {
signup_status: f"<div class='status-error'>❌ Error: {str(e)}</div>"
}
def handle_analysis(patient_name, patient_age, patient_gender, wound_location, wound_duration,
pain_level, moisture_level, infection_signs, diabetic_status, previous_treatment,
medical_history, medications, allergies, additional_notes, wound_image):
try:
if not wound_image:
return "<div class='status-error'>❌ Please upload a wound image for analysis.</div>"
# Show loading state
loading_html = """
<div style="text-align:center; padding: 30px;">
<div style="display:inline-block; border:4px solid #3182ce; border-radius:50%; border-top-color:transparent; width:40px; height:40px; animation:spin 1s linear infinite;"></div>
<p style="margin-top:15px; color:#3182ce; font-weight:600;">Processing wound analysis...</p>
<style>@keyframes spin {0% {transform:rotate(0deg)} 100% {transform:rotate(360deg)}}</style>
</div>
"""
# 1. Construct questionnaire dictionary for AIProcessor
questionnaire_data = {
'user_id': self.current_user.get('id'),
'age': patient_age,
'diabetic': 'Yes' if diabetic_status != 'Non-diabetic' else 'No',
'allergies': allergies,
'date_of_injury': 'Unknown', # Not collected in this form
'professional_care': 'Yes', # Assumed since using professional interface
'oozing_bleeding': 'None', # Could be mapped from infection_signs
'infection': 'Yes' if infection_signs != 'None' else 'No',
'moisture': moisture_level,
# Additional fields for comprehensive analysis
'patient_name': patient_name,
'patient_gender': patient_gender,
'wound_location': wound_location,
'wound_duration': wound_duration,
'pain_level': pain_level,
'previous_treatment': previous_treatment,
'medical_history': medical_history,
'medications': medications,
'additional_notes': additional_notes
}
# 2. Save questionnaire in DB first
questionnaire_id = self.database_manager.save_questionnaire(questionnaire_data)
# 3. Run AI analysis using the AIProcessor class
try:
logging.info(f"Starting AI analysis for image: {wound_image}")
# Use the AIProcessor analyze_wound method
analysis_result = self.wound_analyzer.analyze_wound(wound_image, questionnaire_data)
if not analysis_result.get('success', False):
raise Exception(analysis_result.get('error', 'Analysis failed for unknown reason'))
# 4. Save AI analysis result to database
self.database_manager.save_analysis_result(questionnaire_id, analysis_result)
# 5. Format comprehensive analysis results with all images
formatted_analysis = self._format_comprehensive_analysis_results(
analysis_result, wound_image, questionnaire_data
)
return formatted_analysis
except Exception as analysis_error:
logging.error(f"AI analysis error: {analysis_error}")
return f"""
<div class='status-error' style='padding: 20px; background: #ffeeee; border-left: 5px solid #ff5555; margin: 20px 0;'>
<h3>❌ Analysis Error</h3>
<p>There was an error analyzing the wound image:</p>
<pre style='background: #f5f5f5; padding: 10px; border-radius: 5px;'>{str(analysis_error)}</pre>
<p>Please try again with a different image or contact support.</p>
</div>
"""
except Exception as e:
logging.error(f"Analysis handler error: {e}")
return f"<div class='status-error'>❌ Analysis failed: {str(e)}</div>"
def handle_logout():
self.current_user = {}
return {
auth_panel: gr.update(visible=True),
practitioner_panel: gr.update(visible=False)
}
def toggle_role_fields(role):
if role == "organization":
return {
org_fields: gr.update(visible=True),
prac_fields: gr.update(visible=False)
}
else:
return {
org_fields: gr.update(visible=False),
prac_fields: gr.update(visible=True)
}
def load_patient_history():
try:
user_id = self.current_user.get('id')
if not user_id:
return "<div class='status-error'>❌ Please login first.</div>"
history_data = self.patient_history_manager.get_user_patient_history(user_id)
formatted_history = self.patient_history_manager.format_history_for_display(history_data)
return formatted_history
except Exception as e:
logging.error(f"Error loading patient history: {e}")
return f"<div class='status-error'>❌ Error loading history: {str(e)}</div>"
def search_specific_patient(patient_name):
try:
user_id = self.current_user.get('id')
if not user_id:
return "<div class='status-error'>❌ Please login first.</div>"
if not patient_name.strip():
return "<div class='status-warning'>⚠️ Please enter a patient name to search.</div>"
patient_data = self.patient_history_manager.search_patient_by_name(user_id, patient_name.strip())
if patient_data:
formatted_data = self.patient_history_manager.format_patient_data_for_display(patient_data)
return formatted_data
else:
return f"<div class='status-warning'>⚠️ No records found for patient: {patient_name}</div>"
except Exception as e:
logging.error(f"Error searching patient: {e}")
return f"<div class='status-error'>❌ Error searching patient: {str(e)}</div>"
# Bind event handlers
login_btn.click(
handle_login,
inputs=[login_username, login_password],
outputs=[auth_panel, practitioner_panel, login_status]
)
signup_btn.click(
handle_signup,
inputs=[signup_username, signup_email, signup_password, signup_name, signup_role,
org_name, phone, country_code, department, location, organization_dropdown],
outputs=[signup_status]
)
signup_role.change(
toggle_role_fields,
inputs=[signup_role],
outputs=[org_fields, prac_fields]
)
analyze_btn.click(
handle_analysis,
inputs=[patient_name, patient_age, patient_gender, wound_location, wound_duration,
pain_level, moisture_level, infection_signs, diabetic_status, previous_treatment,
medical_history, medications, allergies, additional_notes, wound_image],
outputs=[analysis_output]
)
logout_btn_prac.click(
handle_logout,
outputs=[auth_panel, practitioner_panel]
)
history_btn.click(
load_patient_history,
outputs=[patient_history_output]
)
search_patient_btn.click(
search_specific_patient,
inputs=[search_patient_name],
outputs=[specific_patient_output]
)
return app
def _format_comprehensive_analysis_results(self, analysis_result, image_url=None, questionnaire_data=None):
"""Format comprehensive analysis results with all visualization images from AIProcessor."""
try:
# Extract the core analysis results from AIProcessor
success = analysis_result.get('success', False)
if not success:
error_msg = analysis_result.get('error', 'Unknown error')
return f"<div class='status-error'>❌ Analysis failed: {error_msg}</div>"
visual_analysis = analysis_result.get('visual_analysis', {})
report = analysis_result.get('report', '')
saved_image_path = analysis_result.get('saved_image_path', '')
# Extract wound metrics
wound_type = visual_analysis.get('wound_type', 'Unknown')
length_cm = visual_analysis.get('length_cm', 0)
breadth_cm = visual_analysis.get('breadth_cm', 0)
area_cm2 = visual_analysis.get('surface_area_cm2', 0)
detection_confidence = visual_analysis.get('detection_confidence', 0)
# Get image paths for visualizations
detection_image_path = visual_analysis.get('detection_image_path', '')
segmentation_image_path = visual_analysis.get('segmentation_image_path', '')
original_image_path = visual_analysis.get('original_image_path', '')
# Convert images to base64 for embedding
original_image_base64 = None
detection_image_base64 = None
segmentation_image_base64 = None
# Original uploaded image
if image_url and os.path.exists(image_url):
original_image_base64 = self.image_to_base64(image_url)
elif original_image_path and os.path.exists(original_image_path):
original_image_base64 = self.image_to_base64(original_image_path)
elif saved_image_path and os.path.exists(saved_image_path):
original_image_base64 = self.image_to_base64(saved_image_path)
# Detection visualization
if detection_image_path and os.path.exists(detection_image_path):
detection_image_base64 = self.image_to_base64(detection_image_path)
# Segmentation visualization
if segmentation_image_path and os.path.exists(segmentation_image_path):
segmentation_image_base64 = self.image_to_base64(segmentation_image_path)
# Generate risk assessment from questionnaire data
risk_assessment = self._generate_risk_assessment(questionnaire_data)
risk_level = risk_assessment['risk_level']
risk_score = risk_assessment['risk_score']
risk_factors = risk_assessment['risk_factors']
# Set risk class for styling
risk_class = "low"
if risk_level.lower() == "moderate":
risk_class = "moderate"
elif risk_level.lower() == "high":
risk_class = "high"
# Format risk factors
risk_factors_html = "<ul>" + "".join(f"<li>{factor}</li>" for factor in risk_factors) + "</ul>" if risk_factors else "<p>No specific risk factors identified.</p>"
# Create image gallery
image_gallery_html = ""
if original_image_base64 or detection_image_base64 or segmentation_image_base64:
image_gallery_html = '<div class="image-gallery">'
if original_image_base64:
image_gallery_html += f'''
<div class="image-item">
<img src="{original_image_base64}" alt="Original Wound Image">
<h4>📸 Original Wound Image</h4>
<p>Uploaded image for analysis</p>
</div>
'''
if detection_image_base64:
image_gallery_html += f'''
<div class="image-item">
<img src="{detection_image_base64}" alt="Wound Detection">
<h4>🎯 Wound Detection</h4>
<p>AI-detected wound boundaries with {detection_confidence:.1%} confidence</p>
</div>
'''
if segmentation_image_base64:
image_gallery_html += f'''
<div class="image-item">
<img src="{segmentation_image_base64}" alt="Wound Segmentation">
<h4>📏 Wound Segmentation</h4>
<p>Detailed wound area measurement and analysis</p>
</div>
'''
image_gallery_html += '</div>'
# Convert markdown report to HTML
report_html = ""
if report:
report_html = self.markdown_to_html(report)
# Final comprehensive HTML output
html_output = f"""
<div style="max-width: 1200px; margin: 0 auto; background: white; border-radius: 16px; box-shadow: 0 8px 32px rgba(0,0,0,0.1); overflow: hidden;">
<div style="background: linear-gradient(135deg, #3182ce 0%, #2c5aa0 100%); color: white; padding: 40px; text-align: center;">
<h1 style="margin: 0; font-size: 32px; font-weight: 700;">🔬 SmartHeal AI Comprehensive Analysis</h1>
<p style="margin: 15px 0 0 0; opacity: 0.9; font-size: 18px;">Advanced Computer Vision & Medical AI Assessment</p>
<div style="background: rgba(255,255,255,0.1); padding: 15px; border-radius: 8px; margin-top: 20px;">
<p style="margin: 0; font-size: 16px;"><strong>Patient:</strong> {questionnaire_data.get('patient_name', 'Unknown')} | <strong>Analysis Date:</strong> {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}</p>
</div>
</div>
<div style="padding: 40px;">
<div class="status-success" style="margin-bottom: 30px;">
<strong>✅ Analysis Status:</strong> Analysis completed successfully with comprehensive wound assessment
</div>
<!-- Image Gallery Section -->
<div style="margin-bottom: 40px;">
<h2 style="color: #2d3748; font-size: 24px; margin-bottom: 20px; border-bottom: 2px solid #e53e3e; padding-bottom: 10px;">🖼️ Visual Analysis Gallery</h2>
{image_gallery_html}
</div>
<!-- Wound Detection & Classification -->
<div style="background: #f8f9fa; padding: 30px; border-radius: 12px; margin-bottom: 30px;">
<h2 style="color: #2d3748; margin-top: 0;">🔍 Wound Detection & Classification</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(200px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #3182ce; margin: 0 0 10px 0;">Wound Type</h3>
<p style="font-weight: 600; font-size: 18px; color: #2d3748; margin: 0;">{wound_type}</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #3182ce; margin: 0 0 10px 0;">Detection Confidence</h3>
<p style="font-weight: 600; font-size: 18px; color: #2d3748; margin: 0;">{detection_confidence:.1%}</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #3182ce; margin: 0 0 10px 0;">Location</h3>
<p style="font-weight: 600; font-size: 18px; color: #2d3748; margin: 0;">{questionnaire_data.get('wound_location', 'Not specified')}</p>
</div>
</div>
</div>
<!-- Wound Measurements -->
<div style="background: #e7f5ff; padding: 30px; border-radius: 12px; margin-bottom: 30px;">
<h2 style="color: #2d3748; margin-top: 0;">📏 Wound Measurements</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(150px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #e53e3e; margin: 0 0 10px 0;">Length</h3>
<p style="font-weight: 700; font-size: 24px; color: #2d3748; margin: 0;">{length_cm:.2f} cm</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #e53e3e; margin: 0 0 10px 0;">Width</h3>
<p style="font-weight: 700; font-size: 24px; color: #2d3748; margin: 0;">{breadth_cm:.2f} cm</p>
</div>
<div style="background: white; padding: 20px; border-radius: 8px; text-align: center; box-shadow: 0 2px 8px rgba(0,0,0,0.1);">
<h3 style="color: #e53e3e; margin: 0 0 10px 0;">Surface Area</h3>
<p style="font-weight: 700; font-size: 24px; color: #2d3748; margin: 0;">{area_cm2:.2f} cm²</p>
</div>
</div>
</div>
<!-- Risk Assessment -->
<div style="background: #fff4e6; padding: 30px; border-radius: 12px; margin-bottom: 30px;">
<h2 style="color: #2d3748; margin-top: 0;">⚠️ Risk Assessment</h2>
<div style="display: flex; align-items: center; margin: 20px 0; flex-wrap: wrap;">
<div style="background: {'#d4edda' if risk_class == 'low' else '#fff3cd' if risk_class == 'moderate' else '#f8d7da'};
color: {'#155724' if risk_class == 'low' else '#856404' if risk_class == 'moderate' else '#721c24'};
padding: 15px 30px;
border-radius: 30px;
font-weight: 700;
font-size: 20px;
text-transform: uppercase;
letter-spacing: 1px;
margin-right: 20px;
margin-bottom: 10px;">
{risk_level} RISK
</div>
<div style="font-size: 18px; color: #2d3748;">
<strong>Risk Score:</strong> {risk_score}/10
</div>
</div>
<div style="background: white; padding: 25px; border-radius: 8px; margin: 15px 0; box-shadow: 0 2px 8px rgba(0,0,0,0.05);">
<h3 style="margin-top: 0; color: #2d3748;">Identified Risk Factors:</h3>
{risk_factors_html}
</div>
</div>
<!-- Patient Information Summary -->
<div style="background: #f0f8f0; padding: 30px; border-radius: 12px; margin-bottom: 30px;">
<h2 style="color: #2d3748; margin-top: 0;">👤 Patient Information Summary</h2>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 15px;">
<div><strong>Age:</strong> {questionnaire_data.get('age', 'Not specified')} years</div>
<div><strong>Gender:</strong> {questionnaire_data.get('patient_gender', 'Not specified')}</div>
<div><strong>Diabetic Status:</strong> {questionnaire_data.get('diabetic', 'Unknown')}</div>
<div><strong>Pain Level:</strong> {questionnaire_data.get('pain_level', 'Not assessed')}/10</div>
<div><strong>Wound Duration:</strong> {questionnaire_data.get('wound_duration', 'Not specified')}</div>
<div><strong>Moisture Level:</strong> {questionnaire_data.get('moisture', 'Not assessed')}</div>
</div>
{f"<div style='margin-top: 20px;'><strong>Medical History:</strong> {questionnaire_data.get('medical_history', 'None provided')}</div>" if questionnaire_data.get('medical_history') else ""}
{f"<div style='margin-top: 10px;'><strong>Current Medications:</strong> {questionnaire_data.get('medications', 'None listed')}</div>" if questionnaire_data.get('medications') else ""}
{f"<div style='margin-top: 10px;'><strong>Known Allergies:</strong> {questionnaire_data.get('allergies', 'None listed')}</div>" if questionnaire_data.get('allergies') else ""}
</div>
<!-- AI Generated Report -->
{f'<div style="background: #f8f9fa; padding: 30px; border-radius: 12px; margin-bottom: 30px;"><h2 style="color: #2d3748; margin-top: 0;">🤖 AI-Generated Clinical Report</h2><div style="background: white; padding: 25px; border-radius: 8px; box-shadow: 0 2px 8px rgba(0,0,0,0.05);">{report_html}</div></div>' if report_html else ''}
<!-- Important Disclaimers -->
<div style="background: #fff5f5; border: 2px solid #feb2b2; padding: 25px; border-radius: 12px; margin: 30px 0;">
<h3 style="color: #c53030; margin-top: 0;">⚠️ Important Medical Disclaimers</h3>
<ul style="color: #742a2a; line-height: 1.6;">
<li><strong>Not a Medical Diagnosis:</strong> This AI analysis is for informational purposes only and does not constitute medical advice, diagnosis, or treatment.</li>
<li><strong>Professional Consultation Required:</strong> Always consult with qualified healthcare professionals for proper clinical assessment and treatment decisions.</li>
<li><strong>Measurement Accuracy:</strong> All measurements are estimates based on computer vision algorithms and should be verified with clinical tools.</li>
<li><strong>Risk Assessment Limitations:</strong> Risk factors are based on provided information and may not reflect the complete clinical picture.</li>
</ul>
</div>
<!-- Footer -->
<div style="text-align: center; padding: 30px 0; border-top: 2px solid #e2e8f0; margin-top: 30px;">
<p style="color: #6c757d; font-style: italic; font-size: 16px; margin: 0;">
🏥 Analysis completed by <strong>SmartHeal AI</strong> - Advanced Wound Care Assistant<br>
<small>Report generated on {datetime.now().strftime('%B %d, %Y at %I:%M %p')}</small>
</p>
</div>
</div>
</div>
"""
return html_output
except Exception as e:
logging.error(f"Error formatting comprehensive results: {e}")
return f"<div class='status-error'>❌ Error displaying results: {str(e)}</div>"
def _generate_risk_assessment(self, questionnaire_data):
"""Generate risk assessment based on questionnaire data"""
if not questionnaire_data:
return {'risk_level': 'Unknown', 'risk_score': 0, 'risk_factors': []}
risk_factors = []
risk_score = 0
try:
# Age assessment
age = questionnaire_data.get('age', 0)
if isinstance(age, str):
try:
age = int(age)
except ValueError:
age = 0
if age > 65:
risk_factors.append("Advanced age (>65 years)")
risk_score += 2
elif age > 50:
risk_factors.append("Older adult (50-65 years)")
risk_score += 1
# Diabetic status
diabetic_status = str(questionnaire_data.get('diabetic', '')).lower()
if 'yes' in diabetic_status:
risk_factors.append("Diabetes mellitus")
risk_score += 3
# Infection signs
infection = str(questionnaire_data.get('infection', '')).lower()
if 'yes' in infection:
risk_factors.append("Signs of infection present")
risk_score += 3
# Pain level
pain_level = questionnaire_data.get('pain_level', 0)
if isinstance(pain_level, str):
try:
pain_level = float(pain_level)
except ValueError:
pain_level = 0
if pain_level >= 7:
risk_factors.append("High pain level (≥7/10)")
risk_score += 2
elif pain_level >= 5:
risk_factors.append("Moderate pain level (5-6/10)")
risk_score += 1
# Wound duration
duration = str(questionnaire_data.get('wound_duration', '')).lower()
if any(term in duration for term in ['month', 'months', 'year', 'years']):
risk_factors.append("Chronic wound (>4 weeks)")
risk_score += 3
# Moisture level
moisture = str(questionnaire_data.get('moisture', '')).lower()
if any(term in moisture for term in ['wet', 'saturated']):
risk_factors.append("Excessive wound exudate")
risk_score += 1
# Medical history analysis
medical_history = str(questionnaire_data.get('medical_history', '')).lower()
if any(term in medical_history for term in ['vascular', 'circulation', 'heart']):
risk_factors.append("Cardiovascular disease")
risk_score += 2
if any(term in medical_history for term in ['immune', 'cancer', 'steroid']):
risk_factors.append("Immune system compromise")
risk_score += 2
if any(term in medical_history for term in ['smoking', 'tobacco']):
risk_factors.append("Smoking history")
risk_score += 2
# Determine risk level
if risk_score >= 8:
risk_level = "Very High"
elif risk_score >= 6:
risk_level = "High"
elif risk_score >= 3:
risk_level = "Moderate"
else:
risk_level = "Low"
return {
'risk_score': risk_score,
'risk_level': risk_level,
'risk_factors': risk_factors
}
except Exception as e:
logging.error(f"Risk assessment error: {e}")
return {
'risk_score': 0,
'risk_level': 'Unknown',
'risk_factors': ['Unable to assess risk due to data processing error']
}