SmartHeal commited on
Commit
0249388
·
verified ·
1 Parent(s): 55faf5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -1059
app.py CHANGED
@@ -1,1072 +1,56 @@
1
- # smartheal_ai_processor.py
2
- # Verbose, instrumented version — preserves public class/function names
3
- # Turn on deep logging: export LOGLEVEL=DEBUG SMARTHEAL_DEBUG=1
4
 
5
  import os
6
  import logging
7
- from datetime import datetime
8
- from typing import Optional, Dict, List, Tuple
 
9
 
10
- # ---- Environment defaults (do NOT globally hint CUDA here) ----
11
- os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
12
- LOGLEVEL = os.getenv("LOGLEVEL", "INFO").upper()
13
- SMARTHEAL_DEBUG = os.getenv("SMARTHEAL_DEBUG", "0") == "1"
 
 
14
 
15
- import cv2
16
- import numpy as np
17
- from PIL import Image
18
- from PIL.ExifTags import TAGS
19
 
20
- # --- Logging config ---
21
- logging.basicConfig(
22
- level=getattr(logging, LOGLEVEL, logging.INFO),
23
- format="%(asctime)s - %(levelname)s - %(message)s",
24
- )
25
-
26
- def _log_kv(prefix: str, kv: Dict):
27
- logging.debug(prefix + " | " + " | ".join(f"{k}={v}" for k, v in kv.items()))
28
-
29
- # --- Spaces GPU decorator (REQUIRED) ---
30
- from spaces import GPU as _SPACES_GPU
31
-
32
- @_SPACES_GPU(enable_queue=True)
33
- def smartheal_gpu_stub(ping: int = 0) -> str:
34
- return "ready"
35
-
36
- # ---- Paths / constants ----
37
- UPLOADS_DIR = "uploads"
38
- os.makedirs(UPLOADS_DIR, exist_ok=True)
39
-
40
- HF_TOKEN = os.getenv("HF_TOKEN", None)
41
- YOLO_MODEL_PATH = "src/best.pt"
42
- SEG_MODEL_PATH = "src/segmentation_model.h5" # optional; legacy .h5 supported
43
- GUIDELINE_PDFS = ["src/eHealth in Wound Care.pdf", "src/IWGDF Guideline.pdf", "src/evaluation.pdf"]
44
- DATASET_ID = "SmartHeal/wound-image-uploads"
45
- DEFAULT_PX_PER_CM = 38.0
46
- PX_PER_CM_MIN, PX_PER_CM_MAX = 5.0, 1200.0
47
-
48
- # Segmentation preprocessing knobs
49
- SEG_EXPECTS_RGB = os.getenv("SEG_EXPECTS_RGB", "1") == "1" # most TF models trained on RGB
50
- SEG_NORM = os.getenv("SEG_NORM", "0to1") # "0to1" | "imagenet"
51
- SEG_THRESH = float(os.getenv("SEG_THRESH", "0.5"))
52
-
53
- models_cache: Dict[str, object] = {}
54
- knowledge_base_cache: Dict[str, object] = {}
55
-
56
- # ---------- Utilities to prevent CUDA in main process ----------
57
- from contextlib import contextmanager
58
-
59
- @contextmanager
60
- def _no_cuda_env():
61
- """
62
- Mask GPUs so any library imported/constructed in the main process
63
- cannot see CUDA (required for Spaces Stateless GPU).
64
- """
65
- prev = os.environ.get("CUDA_VISIBLE_DEVICES")
66
- os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
67
- try:
68
- yield
69
- finally:
70
- if prev is None:
71
- os.environ.pop("CUDA_VISIBLE_DEVICES", None)
72
- else:
73
- os.environ["CUDA_VISIBLE_DEVICES"] = prev
74
-
75
- # ---------- Lazy imports (wrapped where needed) ----------
76
- def _import_ultralytics():
77
- # Prevent Ultralytics from probing CUDA on import
78
- with _no_cuda_env():
79
- from ultralytics import YOLO
80
- return YOLO
81
-
82
- def _import_tf_loader():
83
- import tensorflow as tf
84
- tf.config.set_visible_devices([], "GPU")
85
- from tensorflow.keras.models import load_model
86
- return load_model
87
-
88
- def _import_hf_cls():
89
- from transformers import pipeline
90
- return pipeline
91
-
92
- def _import_embeddings():
93
- from langchain_community.embeddings import HuggingFaceEmbeddings
94
- return HuggingFaceEmbeddings
95
-
96
- def _import_langchain_pdf():
97
- from langchain_community.document_loaders import PyPDFLoader
98
- return PyPDFLoader
99
-
100
- def _import_langchain_faiss():
101
- from langchain_community.vectorstores import FAISS
102
- return FAISS
103
-
104
- def _import_hf_hub():
105
- from huggingface_hub import HfApi, HfFolder
106
- return HfApi, HfFolder
107
-
108
- # ---------- SmartHeal prompts (system + user prefix) ----------
109
- SMARTHEAL_SYSTEM_PROMPT = """\
110
- You are SmartHeal Clinical Assistant, a wound-care decision-support system.
111
- You analyze wound photographs and brief patient context to produce careful,
112
- specific, guideline-informed recommendations WITHOUT diagnosing. You always:
113
- - Use the measurements calculated by the vision pipeline as ground truth.
114
- - Prefer concise, actionable steps tailored to exudate level, infection risk, and pain.
115
- - Flag uncertainties and red flags that need escalation to a clinician.
116
- - Avoid contraindicated advice; do not infer unseen comorbidities.
117
- - Keep under 300 words and use the requested headings exactly.
118
- - Tone: professional, clear, and conservative; no definitive medical claims.
119
- - Safety: remind the user to seek clinician review for changes or red flags.
120
- """
121
-
122
- SMARTHEAL_USER_PREFIX = """\
123
- Patient: {patient_info}
124
- Visual findings: type={wound_type}, size={length_cm}x{breadth_cm} cm, area={area_cm2} cm^2,
125
- detection_conf={det_conf:.2f}, calibration={px_per_cm} px/cm.
126
- Guideline context (snippets you can draw principles from; do not quote at length):
127
- {guideline_context}
128
- Write a structured answer with these headings exactly:
129
- 1. Clinical Summary (max 4 bullet points)
130
- 2. Likely Stage/Type (if uncertain, say 'uncertain')
131
- 3. Treatment Plan (specific dressing choices and frequency based on exudate/infection risk)
132
- 4. Red Flags (what to escalate and when)
133
- 5. Follow-up Cadence (days)
134
- 6. Notes (assumptions/uncertainties)
135
- Keep to 220–300 words. Do NOT provide diagnosis. Avoid contraindicated advice.
136
- """
137
-
138
- # ---------- MedGemma-only text generator ----------
139
- @_SPACES_GPU(enable_queue=True)
140
- def _medgemma_generate_gpu(prompt: str, model_id: str, max_new_tokens: int, token: Optional[str]):
141
- """
142
- Runs entirely inside a Spaces GPU worker. Uses Med-Gemma (text-only) to draft the report.
143
- """
144
- import torch
145
- from transformers import pipeline
146
-
147
- pipe = pipeline(
148
- task="text-generation",
149
- model=model_id,
150
- torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
151
- device_map="auto" if torch.cuda.is_available() else None,
152
- token=token,
153
- trust_remote_code=True,
154
- model_kwargs={"low_cpu_mem_usage": True},
155
- )
156
- out = pipe(
157
- prompt,
158
- max_new_tokens=max_new_tokens,
159
- do_sample=False,
160
- temperature=0.2,
161
- return_full_text=True,
162
- )
163
- text = (out[0].get("generated_text") if isinstance(out, list) else out).strip()
164
- # Remove the prompt echo if present
165
- if text.startswith(prompt):
166
- text = text[len(prompt):].lstrip()
167
- return text or "⚠️ Empty response"
168
-
169
- def generate_medgemma_report( # kept name so callers don't change
170
- patient_info: str,
171
- visual_results: Dict,
172
- guideline_context: str,
173
- image_pil: Image.Image, # kept for signature compatibility; not used by MedGemma
174
- max_new_tokens: Optional[int] = None,
175
- ) -> str:
176
- """
177
- MedGemma (text-only) report generation.
178
- The image is analyzed by the vision pipeline; MedGemma formats clinical guidance text.
179
- """
180
- if os.getenv("SMARTHEAL_ENABLE_VLM", "1") != "1":
181
- return "⚠️ VLM disabled"
182
-
183
- # Default to a public Med-Gemma instruction-tuned model (update via env if you have access to another).
184
- model_id = os.getenv("SMARTHEAL_MEDGEMMA_MODEL", "google/med-gemma-2-2b-it")
185
- max_new_tokens = max_new_tokens or int(os.getenv("SMARTHEAL_VLM_MAX_TOKENS", "600"))
186
-
187
- uprompt = SMARTHEAL_USER_PREFIX.format(
188
- patient_info=patient_info,
189
- wound_type=visual_results.get("wound_type", "Unknown"),
190
- length_cm=visual_results.get("length_cm", 0),
191
- breadth_cm=visual_results.get("breadth_cm", 0),
192
- area_cm2=visual_results.get("surface_area_cm2", 0),
193
- det_conf=float(visual_results.get("detection_confidence", 0.0)),
194
- px_per_cm=visual_results.get("px_per_cm", "?"),
195
- guideline_context=(guideline_context or "")[:900],
196
- )
197
-
198
- # Compose a single text prompt
199
- prompt = f"{SMARTHEAL_SYSTEM_PROMPT}\n\n{uprompt}\n\nAnswer:"
200
-
201
- try:
202
- return _medgemma_generate_gpu(prompt, model_id, max_new_tokens, HF_TOKEN)
203
- except Exception as e:
204
- logging.error(f"MedGemma call failed: {e}")
205
- return "⚠️ VLM error"
206
-
207
- # ---------- Input-shape helpers (avoid `.as_list()` on strings) ----------
208
- def _shape_to_hw(shape) -> Tuple[Optional[int], Optional[int]]:
209
- try:
210
- if hasattr(shape, "as_list"):
211
- shape = shape.as_list()
212
- except Exception:
213
- pass
214
- if isinstance(shape, (tuple, list)):
215
- if len(shape) == 4: # (None, H, W, C)
216
- H, W = shape[1], shape[2]
217
- elif len(shape) == 3: # (H, W, C)
218
- H, W = shape[0], shape[1]
219
- else:
220
- return (None, None)
221
- try: H = int(H) if (H is not None and str(H).lower() != "none") else None
222
- except Exception: H = None
223
- try: W = int(W) if (W is not None and str(W).lower() != "none") else None
224
- except Exception: W = None
225
- return (H, W)
226
- return (None, None)
227
-
228
- def _get_model_input_hw(model, default_hw: Tuple[int, int] = (224, 224)) -> Tuple[int, int]:
229
- H, W = _shape_to_hw(getattr(model, "input_shape", None))
230
- if H and W:
231
- return H, W
232
- try:
233
- inputs = getattr(model, "inputs", None)
234
- if inputs:
235
- H, W = _shape_to_hw(inputs[0].shape)
236
- if H and W:
237
- return H, W
238
- except Exception:
239
- pass
240
- try:
241
- cfg = model.get_config() if hasattr(model, "get_config") else None
242
- if isinstance(cfg, dict):
243
- for layer in cfg.get("layers", []):
244
- conf = (layer or {}).get("config", {})
245
- cand = conf.get("batch_input_shape") or conf.get("batch_shape")
246
- H, W = _shape_to_hw(cand)
247
- if H and W:
248
- return H, W
249
- except Exception:
250
- pass
251
- logging.warning(f"Could not resolve model input shape; using default {default_hw}.")
252
- return default_hw
253
-
254
- # ---------- Initialize CPU models ----------
255
- def load_yolo_model():
256
- YOLO = _import_ultralytics()
257
- with _no_cuda_env():
258
- model = YOLO(YOLO_MODEL_PATH)
259
- return model
260
-
261
- def load_segmentation_model(path: Optional[str] = None):
262
- """
263
- Robust loader for legacy .h5 models across TF/Keras versions.
264
- Uses global SEG_MODEL_PATH by default.
265
- """
266
- import ast
267
- import tensorflow as tf
268
- tf.config.set_visible_devices([], "GPU")
269
- model_path = path or SEG_MODEL_PATH
270
-
271
- # Attempt 1: tf.keras with safe_mode=False
272
- try:
273
- m = tf.keras.models.load_model(model_path, compile=False, safe_mode=False)
274
- logging.info("✅ Segmentation model loaded (tf.keras, safe_mode=False).")
275
- return m
276
- except Exception as e1:
277
- logging.warning(f"tf.keras load (safe_mode=False) failed: {e1}")
278
-
279
- # Attempt 2: patched InputLayer (drop legacy args; coerce string shapes)
280
- try:
281
- from tensorflow.keras.layers import InputLayer as _KInputLayer
282
- def _InputLayerPatched(*args, **kwargs):
283
- kwargs.pop("batch_shape", None)
284
- kwargs.pop("batch_input_shape", None)
285
- if "shape" in kwargs and isinstance(kwargs["shape"], str):
286
- try:
287
- kwargs["shape"] = tuple(ast.literal_eval(kwargs["shape"]))
288
- except Exception:
289
- kwargs.pop("shape", None)
290
- return _KInputLayer(**kwargs)
291
- m = tf.keras.models.load_model(
292
- model_path,
293
- compile=False,
294
- custom_objects={"InputLayer": _InputLayerPatched},
295
- safe_mode=False,
296
- )
297
- logging.info("✅ Segmentation model loaded (patched InputLayer).")
298
- return m
299
- except Exception as e2:
300
- logging.warning(f"Patched InputLayer load failed: {e2}")
301
-
302
- # Attempt 3: keras 2 shim (tf_keras) if present
303
- try:
304
- import tf_keras
305
- m = tf_keras.models.load_model(model_path, compile=False)
306
- logging.info("✅ Segmentation model loaded (tf_keras compat).")
307
- return m
308
- except Exception as e3:
309
- logging.warning(f"tf_keras load failed or not installed: {e3}")
310
-
311
- raise RuntimeError("Segmentation model could not be loaded; please convert/resave the model.")
312
-
313
- def load_classification_pipeline():
314
- pipe = _import_hf_cls()
315
- return pipe("image-classification", model="Hemg/Wound-classification", token=HF_TOKEN, device="cpu")
316
-
317
- def load_embedding_model():
318
- Emb = _import_embeddings()
319
- return Emb(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
320
-
321
- def initialize_cpu_models() -> None:
322
- if HF_TOKEN:
323
- try:
324
- HfApi, HfFolder = _import_hf_hub()
325
- HfFolder.save_token(HF_TOKEN)
326
- logging.info("✅ HF token set")
327
- except Exception as e:
328
- logging.warning(f"HF token save failed: {e}")
329
-
330
- if "det" not in models_cache:
331
- try:
332
- models_cache["det"] = load_yolo_model()
333
- logging.info("✅ YOLO loaded (CPU; CUDA masked in main)")
334
- except Exception as e:
335
- logging.error(f"YOLO load failed: {e}")
336
-
337
- if "seg" not in models_cache:
338
- try:
339
- if os.path.exists(SEG_MODEL_PATH):
340
- m = load_segmentation_model() # uses global path by default
341
- models_cache["seg"] = m
342
- th, tw = _get_model_input_hw(m, default_hw=(224, 224))
343
- oshape = getattr(m, "output_shape", None)
344
- logging.info(f"✅ Segmentation model loaded (CPU) | input_hw=({th},{tw}) output_shape={oshape}")
345
- else:
346
- models_cache["seg"] = None
347
- logging.warning("Segmentation model file missing; skipping.")
348
- except Exception as e:
349
- models_cache["seg"] = None
350
- logging.warning(f"Segmentation unavailable: {e}")
351
-
352
- if "cls" not in models_cache:
353
- try:
354
- models_cache["cls"] = load_classification_pipeline()
355
- logging.info("✅ Classifier loaded (CPU)")
356
- except Exception as e:
357
- models_cache["cls"] = None
358
- logging.warning(f"Classifier unavailable: {e}")
359
-
360
- if "embedding_model" not in models_cache:
361
- try:
362
- models_cache["embedding_model"] = load_embedding_model()
363
- logging.info("✅ Embeddings loaded (CPU)")
364
- except Exception as e:
365
- models_cache["embedding_model"] = None
366
- logging.warning(f"Embeddings unavailable: {e}")
367
-
368
- def setup_knowledge_base() -> None:
369
- if "vector_store" in knowledge_base_cache:
370
- return
371
- docs: List = []
372
- try:
373
- PyPDFLoader = _import_langchain_pdf()
374
- for pdf in GUIDELINE_PDFS:
375
- if os.path.exists(pdf):
376
- try:
377
- docs.extend(PyPDFLoader(pdf).load())
378
- logging.info(f"Loaded PDF: {pdf}")
379
- except Exception as e:
380
- logging.warning(f"PDF load failed ({pdf}): {e}")
381
- except Exception as e:
382
- logging.warning(f"LangChain PDF loader unavailable: {e}")
383
-
384
- if docs and models_cache.get("embedding_model"):
385
- try:
386
- from langchain.text_splitter import RecursiveCharacterTextSplitter
387
- FAISS = _import_langchain_faiss()
388
- chunks = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100).split_documents(docs)
389
- knowledge_base_cache["vector_store"] = FAISS.from_documents(chunks, models_cache["embedding_model"])
390
- logging.info(f"✅ Knowledge base ready ({len(chunks)} chunks)")
391
- except Exception as e:
392
- knowledge_base_cache["vector_store"] = None
393
- logging.warning(f"KB build failed: {e}")
394
- else:
395
- knowledge_base_cache["vector_store"] = None
396
- logging.warning("KB disabled (no docs or embeddings).")
397
-
398
- initialize_cpu_models()
399
- setup_knowledge_base()
400
-
401
- # ---------- Calibration helpers ----------
402
- def _exif_to_dict(pil_img: Image.Image) -> Dict[str, object]:
403
- out = {}
404
- try:
405
- exif = pil_img.getexif()
406
- if not exif:
407
- return out
408
- for k, v in exif.items():
409
- tag = TAGS.get(k, k)
410
- out[tag] = v
411
- except Exception:
412
- pass
413
- return out
414
-
415
- def _to_float(val) -> Optional[float]:
416
- try:
417
- if val is None:
418
- return None
419
- if isinstance(val, tuple) and len(val) == 2:
420
- num, den = float(val[0]), float(val[1]) if float(val[1]) != 0 else 1.0
421
- return num / den
422
- return float(val)
423
- except Exception:
424
- return None
425
-
426
- def _estimate_sensor_width_mm(f_mm: Optional[float], f35: Optional[float]) -> Optional[float]:
427
- if f_mm and f35 and f35 > 0:
428
- return 36.0 * f_mm / f35
429
- return None
430
-
431
- def estimate_px_per_cm_from_exif(pil_img: Image.Image, default_px_per_cm: float = DEFAULT_PX_PER_CM) -> Tuple[float, Dict]:
432
- meta = {"used": "default", "f_mm": None, "f35": None, "sensor_w_mm": None, "distance_m": None}
433
- try:
434
- exif = _exif_to_dict(pil_img)
435
- f_mm = _to_float(exif.get("FocalLength"))
436
- f35 = _to_float(exif.get("FocalLengthIn35mmFilm") or exif.get("FocalLengthIn35mm"))
437
- subj_dist_m = _to_float(exif.get("SubjectDistance"))
438
- sensor_w_mm = _estimate_sensor_width_mm(f_mm, f35)
439
- meta.update({"f_mm": f_mm, "f35": f35, "sensor_w_mm": sensor_w_mm, "distance_m": subj_dist_m})
440
-
441
- if f_mm and sensor_w_mm and subj_dist_m and subj_dist_m > 0:
442
- w_px = pil_img.width
443
- field_w_mm = sensor_w_mm * (subj_dist_m * 1000.0) / f_mm
444
- field_w_cm = field_w_mm / 10.0
445
- px_per_cm = w_px / max(field_w_cm, 1e-6)
446
- px_per_cm = float(np.clip(px_per_cm, PX_PER_CM_MIN, PX_PER_CM_MAX))
447
- meta["used"] = "exif"
448
- return px_per_cm, meta
449
- return float(default_px_per_cm), meta
450
- except Exception:
451
- return float(default_px_per_cm), meta
452
-
453
- # ---------- Segmentation helpers ----------
454
- def _imagenet_norm(arr: np.ndarray) -> np.ndarray:
455
- mean = np.array([123.675, 116.28, 103.53], dtype=np.float32)
456
- std = np.array([58.395, 57.12, 57.375], dtype=np.float32)
457
- return (arr.astype(np.float32) - mean) / std
458
-
459
- def _preprocess_for_seg(bgr_roi: np.ndarray, target_hw: Tuple[int, int]) -> np.ndarray:
460
- H, W = target_hw
461
- resized = cv2.resize(bgr_roi, (W, H), interpolation=cv2.INTER_LINEAR)
462
- if SEG_EXPECTS_RGB:
463
- resized = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB)
464
- if SEG_NORM.lower() == "imagenet":
465
- x = _imagenet_norm(resized)
466
- else:
467
- x = resized.astype(np.float32) / 255.0
468
- x = np.expand_dims(x, axis=0) # (1,H,W,3)
469
- return x
470
-
471
- def _to_prob(pred: np.ndarray) -> np.ndarray:
472
- p = np.squeeze(pred)
473
- pmin, pmax = float(p.min()), float(p.max())
474
- if pmax > 1.0 or pmin < 0.0:
475
- p = 1.0 / (1.0 + np.exp(-p))
476
- return p.astype(np.float32)
477
-
478
- # ---- Adaptive threshold + GrabCut grow ----
479
- def _adaptive_prob_threshold(p: np.ndarray) -> float:
480
- """
481
- Choose a threshold that avoids tiny blobs while not swallowing skin.
482
- Try Otsu and the 90th percentile, clamp to [0.25, 0.65], pick by area heuristic.
483
- """
484
- p01 = np.clip(p.astype(np.float32), 0, 1)
485
- p255 = (p01 * 255).astype(np.uint8)
486
-
487
- ret_otsu, _ = cv2.threshold(p255, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
488
- thr_otsu = float(np.clip(ret_otsu / 255.0, 0.25, 0.65))
489
- thr_pctl = float(np.clip(np.percentile(p01, 90), 0.25, 0.65))
490
-
491
- def area_frac(thr: float) -> float:
492
- return float((p01 >= thr).sum()) / float(p01.size)
493
-
494
- af_otsu = area_frac(thr_otsu)
495
- af_pctl = area_frac(thr_pctl)
496
-
497
- def score(af: float) -> float:
498
- target_low, target_high = 0.03, 0.10
499
- if af < target_low: return abs(af - target_low) * 3.0
500
- if af > target_high: return abs(af - target_high) * 1.5
501
- return 0.0
502
-
503
- return thr_otsu if score(af_otsu) <= score(af_pctl) else thr_pctl
504
-
505
- def _grabcut_refine(bgr: np.ndarray, seed01: np.ndarray, iters: int = 3) -> np.ndarray:
506
- """Grow from a confident core into low-contrast margins."""
507
- h, w = bgr.shape[:2]
508
- gc = np.full((h, w), cv2.GC_PR_BGD, np.uint8)
509
- k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
510
- seed_dil = cv2.dilate(seed01, k, iterations=1)
511
- gc[seed01.astype(bool)] = cv2.GC_PR_FGD
512
- gc[seed_dil.astype(bool)] = cv2.GC_FGD
513
- gc[0, :], gc[-1, :], gc[:, 0], gc[:, 1] = cv2.GC_BGD, cv2.GC_BGD, cv2.GC_BGD, cv2.GC_BGD
514
- bgdModel = np.zeros((1, 65), np.float64)
515
- fgdModel = np.zeros((1, 65), np.float64)
516
- cv2.grabCut(bgr, gc, None, bgdModel, fgdModel, iters, cv2.GC_INIT_WITH_MASK)
517
- return np.where((gc == cv2.GC_FGD) | (gc == cv2.GC_PR_FGD), 1, 0).astype(np.uint8)
518
-
519
- def _fill_holes(mask01: np.ndarray) -> np.ndarray:
520
- h, w = mask01.shape[:2]
521
- ff = np.zeros((h + 2, w + 2), np.uint8)
522
- m = (mask01 * 255).astype(np.uint8).copy()
523
- cv2.floodFill(m, ff, (0, 0), 255)
524
- m_inv = cv2.bitwise_not(m)
525
- out = ((mask01 * 255) | m_inv) // 255
526
- return out.astype(np.uint8)
527
-
528
- def _clean_mask(mask01: np.ndarray) -> np.ndarray:
529
- """Open → Close → Fill holes → Largest component (no dilation)."""
530
- mask01 = (mask01 > 0).astype(np.uint8)
531
- k3 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
532
- k5 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
533
- mask01 = cv2.morphologyEx(mask01, cv2.MORPH_OPEN, k3, iterations=1)
534
- mask01 = cv2.morphologyEx(mask01, cv2.MORPH_CLOSE, k5, iterations=1)
535
- mask01 = _fill_holes(mask01)
536
- # Keep largest component only
537
- num, labels, stats, _ = cv2.connectedComponentsWithStats(mask01, 8)
538
- if num > 1:
539
- areas = stats[1:, cv2.CC_STAT_AREA]
540
- if areas.size:
541
- largest_idx = 1 + int(np.argmax(areas))
542
- mask01 = (labels == largest_idx).astype(np.uint8)
543
- return (mask01 > 0).astype(np.uint8)
544
-
545
- # Global last debug dict (per-process)
546
- _last_seg_debug: Dict[str, object] = {}
547
-
548
- def segment_wound(image_bgr: np.ndarray, ts: str, out_dir: str) -> Tuple[np.ndarray, Dict[str, object]]:
549
- """
550
- TF model → adaptive threshold on prob → GrabCut grow → cleanup.
551
- Fallback: KMeans-Lab.
552
- Returns (mask_uint8_0_255, debug_dict)
553
- """
554
- debug = {"used": None, "reason": None, "positive_fraction": 0.0,
555
- "thr": None, "heatmap_path": None, "roi_seen_by_model": None}
556
-
557
- seg_model = models_cache.get("seg", None)
558
-
559
- # --- Model path ---
560
- if seg_model is not None:
561
- try:
562
- th, tw = _get_model_input_hw(seg_model, default_hw=(224, 224))
563
- x = _preprocess_for_seg(image_bgr, (th, tw))
564
- roi_seen_path = None
565
- if SMARTHEAL_DEBUG:
566
- roi_seen_path = os.path.join(out_dir, f"roi_for_seg_{ts}.png")
567
- cv2.imwrite(roi_seen_path, image_bgr)
568
-
569
- pred = seg_model.predict(x, verbose=0)
570
- if isinstance(pred, (list, tuple)): pred = pred[0]
571
- p = _to_prob(pred)
572
- p = cv2.resize(p, (image_bgr.shape[1], image_bgr.shape[0]), interpolation=cv2.INTER_LINEAR)
573
-
574
- heatmap_path = None
575
- if SMARTHEAL_DEBUG:
576
- hm = (np.clip(p, 0, 1) * 255).astype(np.uint8)
577
- heat = cv2.applyColorMap(hm, cv2.COLORMAP_JET)
578
- heatmap_path = os.path.join(out_dir, f"seg_pred_heatmap_{ts}.png")
579
- cv2.imwrite(heatmap_path, heat)
580
-
581
- thr = _adaptive_prob_threshold(p)
582
- core01 = (p >= thr).astype(np.uint8)
583
- core_frac = float(core01.sum()) / float(core01.size)
584
-
585
- if core_frac < 0.005:
586
- thr2 = max(thr - 0.10, 0.15)
587
- core01 = (p >= thr2).astype(np.uint8)
588
- thr = thr2
589
- core_frac = float(core01.sum()) / float(core01.size)
590
-
591
- if core01.any():
592
- gc01 = _grabcut_refine(image_bgr, core01, iters=3)
593
- mask01 = _clean_mask(gc01)
594
- else:
595
- mask01 = np.zeros(core01.shape, np.uint8)
596
-
597
- pos_frac = float(mask01.sum()) / float(mask01.size)
598
- logging.info(f"SegModel USED | thr={float(thr):.2f} core_frac={core_frac:.4f} final_frac={pos_frac:.4f}")
599
-
600
- debug.update({
601
- "used": "tf_model",
602
- "reason": "ok",
603
- "positive_fraction": pos_frac,
604
- "thr": float(thr),
605
- "heatmap_path": heatmap_path,
606
- "roi_seen_by_model": roi_seen_path
607
- })
608
- return (mask01 * 255).astype(np.uint8), debug
609
-
610
- except Exception as e:
611
- logging.warning(f"⚠️ Segmentation model failed → fallback. Reason: {e}")
612
- debug.update({"used": "fallback_kmeans", "reason": f"model_failed: {e}"})
613
-
614
- # --- Fallback: KMeans in Lab (reddest cluster as wound) ---
615
- Z = image_bgr.reshape((-1, 3)).astype(np.float32)
616
- criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
617
- _, labels, centers = cv2.kmeans(Z, 2, None, criteria, 5, cv2.KMEANS_PP_CENTERS)
618
- centers_u8 = centers.astype(np.uint8).reshape(1, 2, 3)
619
- centers_lab = cv2.cvtColor(centers_u8, cv2.COLOR_BGR2LAB)[0]
620
- wound_idx = int(np.argmax(centers_lab[:, 1])) # maximize a* (red)
621
- mask01 = (labels.reshape(image_bgr.shape[:2]) == wound_idx).astype(np.uint8)
622
- mask01 = _clean_mask(mask01)
623
-
624
- pos_frac = float(mask01.sum()) / float(mask01.size)
625
- logging.info(f"KMeans USED | final_frac={pos_frac:.4f}")
626
-
627
- debug.update({
628
- "used": "fallback_kmeans",
629
- "reason": debug.get("reason") or "no_model",
630
- "positive_fraction": pos_frac,
631
- "thr": None
632
- })
633
- return (mask01 * 255).astype(np.uint8), debug
634
-
635
- # ---------- Measurement + overlay helpers ----------
636
- def largest_component_mask(binary01: np.ndarray, min_area_px: int = 50) -> np.ndarray:
637
- num, labels, stats, _ = cv2.connectedComponentsWithStats(binary01.astype(np.uint8), connectivity=8)
638
- if num <= 1:
639
- return binary01.astype(np.uint8)
640
- areas = stats[1:, cv2.CC_STAT_AREA]
641
- if areas.size == 0 or areas.max() < min_area_px:
642
- return binary01.astype(np.uint8)
643
- largest_idx = 1 + int(np.argmax(areas))
644
- return (labels == largest_idx).astype(np.uint8)
645
-
646
- def measure_min_area_rect(mask01: np.ndarray, px_per_cm: float) -> Tuple[float, float, Tuple]:
647
- contours, _ = cv2.findContours(mask01.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
648
- if not contours:
649
- return 0.0, 0.0, (None, None)
650
- cnt = max(contours, key=cv2.contourArea)
651
- rect = cv2.minAreaRect(cnt)
652
- (w_px, h_px) = rect[1]
653
- length_px, breadth_px = (max(w_px, h_px), min(h_px, w_px))
654
- length_cm = round(length_px / max(px_per_cm, 1e-6), 2)
655
- breadth_cm = round(breadth_px / max(px_per_cm, 1e-6), 2)
656
- box = cv2.boxPoints(rect).astype(int)
657
- return length_cm, breadth_cm, (box, rect[0])
658
-
659
- def area_cm2_from_contour(mask01: np.ndarray, px_per_cm: float) -> Tuple[float, Optional[np.ndarray]]:
660
- """Area from largest polygon (sub-pixel); returns (area_cm2, contour)."""
661
- m = (mask01 > 0).astype(np.uint8)
662
- contours, _ = cv2.findContours(m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
663
- if not contours:
664
- return 0.0, None
665
- cnt = max(contours, key=cv2.contourArea)
666
- poly_area_px2 = float(cv2.contourArea(cnt))
667
- area_cm2 = round(poly_area_px2 / (max(px_per_cm, 1e-6) ** 2), 2)
668
- return area_cm2, cnt
669
-
670
- def clamp_area_with_minrect(cnt: np.ndarray, px_per_cm: float, area_cm2_poly: float) -> float:
671
- rect = cv2.minAreaRect(cnt)
672
- (w_px, h_px) = rect[1]
673
- rect_area_px2 = float(max(w_px, 0.0) * max(h_px, 0.0))
674
- rect_area_cm2 = rect_area_px2 / (max(px_per_cm, 1e-6) ** 2)
675
- return round(min(area_cm2_poly, rect_area_cm2 * 1.05), 2)
676
-
677
- def draw_measurement_overlay(
678
- base_bgr: np.ndarray,
679
- mask01: np.ndarray,
680
- rect_box: np.ndarray,
681
- length_cm: float,
682
- breadth_cm: float,
683
- thickness: int = 2
684
- ) -> np.ndarray:
685
- """
686
- 1) Strong red mask overlay + white contour
687
- 2) Min-area rectangle
688
- 3) Double-headed arrows labeled Length/Width
689
- """
690
- overlay = base_bgr.copy()
691
-
692
- # Mask tint
693
- mask255 = (mask01 * 255).astype(np.uint8)
694
- mask3 = cv2.merge([mask255, mask255, mask255])
695
- red = np.zeros_like(overlay); red[:] = (0, 0, 255)
696
- alpha = 0.55
697
- tinted = cv2.addWeighted(overlay, 1 - alpha, red, alpha, 0)
698
- overlay = np.where(mask3 > 0, tinted, overlay)
699
-
700
- # Contour
701
- cnts, _ = cv2.findContours(mask255, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
702
- if cnts:
703
- cv2.drawContours(overlay, cnts, -1, (255, 255, 255), 2)
704
-
705
- if rect_box is not None:
706
- cv2.polylines(overlay, [rect_box], True, (255, 255, 255), thickness)
707
- pts = rect_box.reshape(-1, 2)
708
-
709
- def midpoint(a, b): return (int((a[0] + b[0]) / 2), int((a[1] + b[1]) / 2))
710
- e = [np.linalg.norm(pts[i] - pts[(i + 1) % 4]) for i in range(4)]
711
- long_edge_idx = int(np.argmax(e))
712
- mids = [midpoint(pts[i], pts[(i + 1) % 4]) for i in range(4)]
713
- long_pair = (long_edge_idx, (long_edge_idx + 2) % 4)
714
- short_pair = ((long_edge_idx + 1) % 4, (long_edge_idx + 3) % 4)
715
-
716
- def draw_double_arrow(img, p1, p2):
717
- cv2.arrowedLine(img, p1, p2, (0, 0, 0), thickness + 2, tipLength=0.05)
718
- cv2.arrowedLine(img, p2, p1, (0, 0, 0), thickness + 2, tipLength=0.05)
719
- cv2.arrowedLine(img, p1, p2, (255, 255, 255), thickness, tipLength=0.05)
720
- cv2.arrowedLine(img, p2, p1, (255, 255, 255), thickness, tipLength=0.05)
721
-
722
- def put_label(text, anchor):
723
- org = (anchor[0] + 6, anchor[1] - 6)
724
- cv2.putText(overlay, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 4, cv2.LINE_AA)
725
- cv2.putText(overlay, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
726
-
727
- draw_double_arrow(overlay, mids[long_pair[0]], mids[long_pair[1]])
728
- draw_double_arrow(overlay, mids[short_pair[0]], mids[short_pair[1]])
729
- put_label(f"Length: {length_cm:.2f} cm", mids[long_pair[0]])
730
- put_label(f"Width: {breadth_cm:.2f} cm", mids[short_pair[0]])
731
-
732
- return overlay
733
-
734
- # ---------- AI PROCESSOR ----------
735
- class AIProcessor:
736
  def __init__(self):
737
- self.models_cache = models_cache
738
- self.knowledge_base_cache = knowledge_base_cache
739
- self.uploads_dir = UPLOADS_DIR
740
- self.dataset_id = DATASET_ID
741
- self.hf_token = HF_TOKEN
742
-
743
- def _ensure_analysis_dir(self) -> str:
744
- out_dir = os.path.join(self.uploads_dir, "analysis")
745
- os.makedirs(out_dir, exist_ok=True)
746
- return out_dir
747
-
748
- def perform_visual_analysis(self, image_pil: Image.Image) -> Dict:
749
- """
750
- YOLO detect → crop ROI → segment_wound(ROI) → clean mask →
751
- minAreaRect measurement (cm) using EXIF px/cm → save outputs.
752
- """
753
- try:
754
- px_per_cm, exif_meta = estimate_px_per_cm_from_exif(image_pil, DEFAULT_PX_PER_CM)
755
- # Guardrails for calibration to avoid huge area blow-ups
756
- px_per_cm = float(np.clip(px_per_cm, 20.0, 350.0))
757
- if (exif_meta or {}).get("used") != "exif":
758
- logging.warning(f"Calibration fallback used: px_per_cm={px_per_cm:.2f} (default). Prefer ruler/Aruco for accuracy.")
759
-
760
- image_cv = cv2.cvtColor(np.array(image_pil.convert("RGB")), cv2.COLOR_RGB2BGR)
761
-
762
- # --- Detection ---
763
- det_model = self.models_cache.get("det")
764
- if det_model is None:
765
- raise RuntimeError("YOLO model not loaded")
766
- # Force CPU inference and avoid CUDA touch
767
- results = det_model.predict(image_cv, verbose=False, device="cpu")
768
- if (not results) or (not getattr(results[0], "boxes", None)) or (len(results[0].boxes) == 0):
769
- try:
770
- import gradio as gr
771
- raise gr.Error("No wound could be detected.")
772
- except Exception:
773
- raise RuntimeError("No wound could be detected.")
774
-
775
- box = results[0].boxes[0].xyxy[0].cpu().numpy().astype(int)
776
- x1, y1, x2, y2 = [int(v) for v in box]
777
- x1, y1 = max(0, x1), max(0, y1)
778
- x2, y2 = min(image_cv.shape[1], x2), min(image_cv.shape[0], y2)
779
- roi = image_cv[y1:y2, x1:x2].copy()
780
- if roi.size == 0:
781
- try:
782
- import gradio as gr
783
- raise gr.Error("Detected ROI is empty.")
784
- except Exception:
785
- raise RuntimeError("Detected ROI is empty.")
786
-
787
- out_dir = self._ensure_analysis_dir()
788
- ts = datetime.now().strftime("%Y%m%d_%H%M%S")
789
-
790
- # --- Segmentation (model-first + KMeans fallback) ---
791
- mask_u8_255, seg_debug = segment_wound(roi, ts, out_dir)
792
- mask01 = (mask_u8_255 > 127).astype(np.uint8)
793
-
794
- if mask01.any():
795
- mask01 = _clean_mask(mask01)
796
- logging.debug(f"Mask postproc: px_after={int(mask01.sum())}")
797
-
798
- # --- Measurement (accurate & conservative) ---
799
- if mask01.any():
800
- length_cm, breadth_cm, (box_pts, _) = measure_min_area_rect(mask01, px_per_cm)
801
- area_poly_cm2, largest_cnt = area_cm2_from_contour(mask01, px_per_cm)
802
- if largest_cnt is not None:
803
- surface_area_cm2 = clamp_area_with_minrect(largest_cnt, px_per_cm, area_poly_cm2)
804
- else:
805
- surface_area_cm2 = area_poly_cm2
806
-
807
- anno_roi = draw_measurement_overlay(roi, mask01, box_pts, length_cm, breadth_cm)
808
- segmentation_empty = False
809
- else:
810
- # Fallback if seg failed: use ROI dimensions
811
- h_px = max(0, y2 - y1); w_px = max(0, x2 - x1)
812
- length_cm = round(max(h_px, w_px) / px_per_cm, 2)
813
- breadth_cm = round(min(h_px, w_px) / px_per_cm, 2)
814
- surface_area_cm2 = round((h_px * w_px) / (px_per_cm ** 2), 2)
815
- anno_roi = roi.copy()
816
- cv2.rectangle(anno_roi, (2, 2), (anno_roi.shape[1]-3, anno_roi.shape[0]-3), (0, 0, 255), 3)
817
- cv2.line(anno_roi, (0, 0), (anno_roi.shape[1]-1, anno_roi.shape[0]-1), (0, 0, 255), 2)
818
- cv2.line(anno_roi, (anno_roi.shape[1]-1, 0), (0, anno_roi.shape[0]-1), (0, 0, 255), 2)
819
- box_pts = None
820
- segmentation_empty = True
821
-
822
- # --- Save visualizations ---
823
- original_path = os.path.join(out_dir, f"original_{ts}.png")
824
- cv2.imwrite(original_path, image_cv)
825
-
826
- det_vis = image_cv.copy()
827
- cv2.rectangle(det_vis, (x1, y1), (x2, y2), (0, 255, 0), 2)
828
- detection_path = os.path.join(out_dir, f"detection_{ts}.png")
829
- cv2.imwrite(detection_path, det_vis)
830
-
831
- roi_mask_path = os.path.join(out_dir, f"roi_mask_{ts}.png")
832
- cv2.imwrite(roi_mask_path, (mask01 * 255).astype(np.uint8))
833
-
834
- # ROI overlay (mask tint + contour, without arrows)
835
- mask255 = (mask01 * 255).astype(np.uint8)
836
- mask3 = cv2.merge([mask255, mask255, mask255])
837
- red = np.zeros_like(roi); red[:] = (0, 0, 255)
838
- alpha = 0.55
839
- tinted = cv2.addWeighted(roi, 1 - alpha, red, alpha, 0)
840
- if mask255.any():
841
- roi_overlay = np.where(mask3 > 0, tinted, roi)
842
- cnts, _ = cv2.findContours(mask255, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
843
- cv2.drawContours(roi_overlay, cnts, -1, (255, 255, 255), 2)
844
- else:
845
- roi_overlay = anno_roi
846
-
847
- seg_full = image_cv.copy()
848
- seg_full[y1:y2, x1:x2] = roi_overlay
849
- segmentation_path = os.path.join(out_dir, f"segmentation_{ts}.png")
850
- cv2.imwrite(segmentation_path, seg_full)
851
-
852
- segmentation_roi_path = os.path.join(out_dir, f"segmentation_roi_{ts}.png")
853
- cv2.imwrite(segmentation_roi_path, roi_overlay)
854
-
855
- # Annotated (mask + arrows + labels) in full-frame
856
- anno_full = image_cv.copy()
857
- anno_full[y1:y2, x1:x2] = anno_roi
858
- annotated_seg_path = os.path.join(out_dir, f"segmentation_annotated_{ts}.png")
859
- cv2.imwrite(annotated_seg_path, anno_full)
860
-
861
- # --- Optional classification ---
862
- wound_type = "Unknown"
863
- cls_pipe = self.models_cache.get("cls")
864
- if cls_pipe is not None:
865
- try:
866
- preds = cls_pipe(Image.fromarray(cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)))
867
- if preds:
868
- wound_type = max(preds, key=lambda x: x.get("score", 0)).get("label", "Unknown")
869
- except Exception as e:
870
- logging.warning(f"Classification failed: {e}")
871
-
872
- # Log end-of-seg summary
873
- seg_summary = {
874
- "seg_used": seg_debug.get("used"),
875
- "seg_reason": seg_debug.get("reason"),
876
- "positive_fraction": round(float(seg_debug.get("positive_fraction", 0.0)), 6),
877
- "threshold": seg_debug.get("thr"),
878
- "segmentation_empty": segmentation_empty,
879
- "exif_px_per_cm": round(px_per_cm, 3),
880
- }
881
- _log_kv("SEG_SUMMARY", seg_summary)
882
-
883
- return {
884
- "wound_type": wound_type,
885
- "length_cm": length_cm,
886
- "breadth_cm": breadth_cm,
887
- "surface_area_cm2": surface_area_cm2,
888
- "px_per_cm": round(px_per_cm, 2),
889
- "calibration_meta": exif_meta,
890
- "detection_confidence": float(results[0].boxes.conf[0].cpu().item())
891
- if getattr(results[0].boxes, "conf", None) is not None else 0.0,
892
- "detection_image_path": detection_path,
893
- "segmentation_image_path": annotated_seg_path,
894
- "segmentation_annotated_path": annotated_seg_path,
895
- "segmentation_roi_path": segmentation_roi_path,
896
- "roi_mask_path": roi_mask_path,
897
- "segmentation_empty": segmentation_empty,
898
- "segmentation_debug": seg_debug,
899
- "original_image_path": original_path,
900
- }
901
- except Exception as e:
902
- logging.error(f"Visual analysis failed: {e}", exc_info=True)
903
- raise
904
-
905
- # ---------- Knowledge base + reporting ----------
906
- def query_guidelines(self, query: str) -> str:
907
- try:
908
- vs = self.knowledge_base_cache.get("vector_store")
909
- if not vs:
910
- return "Knowledge base is not available."
911
- retriever = vs.as_retriever(search_kwargs={"k": 5})
912
- docs = retriever.invoke(query)
913
- lines: List[str] = []
914
- for d in docs:
915
- src = (d.metadata or {}).get("source", "N/A")
916
- txt = (d.page_content or "")[:300]
917
- lines.append(f"Source: {src}\nContent: {txt}...")
918
- return "\n\n".join(lines) if lines else "No relevant guideline snippets found."
919
- except Exception as e:
920
- logging.warning(f"Guidelines query failed: {e}")
921
- return f"Guidelines query failed: {str(e)}"
922
-
923
- def _generate_fallback_report(self, patient_info: str, visual_results: Dict, guideline_context: str) -> str:
924
- return f"""# 🩺 SmartHeal AI - Comprehensive Wound Analysis Report
925
- ## 📋 Patient Information
926
- {patient_info}
927
- ## 🔍 Visual Analysis Results
928
- - **Wound Type**: {visual_results.get('wound_type', 'Unknown')}
929
- - **Dimensions**: {visual_results.get('length_cm', 0)} cm × {visual_results.get('breadth_cm', 0)} cm
930
- - **Surface Area**: {visual_results.get('surface_area_cm2', 0)} cm²
931
- - **Detection Confidence**: {visual_results.get('detection_confidence', 0):.1%}
932
- - **Calibration**: {visual_results.get('px_per_cm','?')} px/cm ({(visual_results.get('calibration_meta') or {}).get('used','default')})
933
- ## 📊 Analysis Images
934
- - **Original**: {visual_results.get('original_image_path', 'N/A')}
935
- - **Detection**: {visual_results.get('detection_image_path', 'N/A')}
936
- - **Segmentation**: {visual_results.get('segmentation_image_path', 'N/A')}
937
- - **Annotated**: {visual_results.get('segmentation_annotated_path', 'N/A')}
938
- ## 🎯 Clinical Summary
939
- Automated analysis provides quantitative measurements; verify via clinical examination.
940
- ## 💊 Recommendations
941
- - Cleanse wound gently; select dressing per exudate/infection risk
942
- - Debride necrotic tissue if indicated (clinical decision)
943
- - Document with serial photos and measurements
944
- ## 📅 Monitoring
945
- - Daily in week 1, then every 2–3 days (or as indicated)
946
- - Weekly progress review
947
- ## 📚 Guideline Context
948
- {(guideline_context or '')[:800]}{"..." if guideline_context and len(guideline_context) > 800 else ''}
949
- **Disclaimer:** Automated, for decision support only. Verify clinically.
950
- """
951
-
952
- def generate_final_report(
953
- self,
954
- patient_info: str,
955
- visual_results: Dict,
956
- guideline_context: str,
957
- image_pil: Image.Image,
958
- max_new_tokens: Optional[int] = None,
959
- ) -> str:
960
- try:
961
- report = generate_medgemma_report(
962
- patient_info, visual_results, guideline_context, image_pil, max_new_tokens
963
  )
964
- if report and report.strip() and not report.startswith(("⚠️", "❌")):
965
- return report
966
- logging.warning("VLM unavailable/invalid; using fallback.")
967
- return self._generate_fallback_report(patient_info, visual_results, guideline_context)
968
  except Exception as e:
969
- logging.error(f"Report generation failed: {e}")
970
- return self._generate_fallback_report(patient_info, visual_results, guideline_context)
971
-
972
- def save_and_commit_image(self, image_pil: Image.Image) -> str:
973
- try:
974
- os.makedirs(self.uploads_dir, exist_ok=True)
975
- ts = datetime.now().strftime("%Y%m%d_%H%M%S")
976
- filename = f"{ts}.png"
977
- path = os.path.join(self.uploads_dir, filename)
978
- image_pil.convert("RGB").save(path)
979
- logging.info(f"✅ Image saved locally: {path}")
980
-
981
- if HF_TOKEN and DATASET_ID:
982
- try:
983
- HfApi, HfFolder = _import_hf_hub()
984
- HfFolder.save_token(HF_TOKEN)
985
- api = HfApi()
986
- api.upload_file(
987
- path_or_fileobj=path,
988
- path_in_repo=f"images/{filename}",
989
- repo_id=DATASET_ID,
990
- repo_type="dataset",
991
- token=HF_TOKEN,
992
- commit_message=f"Upload wound image: {filename}",
993
- )
994
- logging.info("✅ Image committed to HF dataset")
995
- except Exception as e:
996
- logging.warning(f"HF upload failed: {e}")
997
-
998
- return path
999
- except Exception as e:
1000
- logging.error(f"Failed to save/commit image: {e}")
1001
- return ""
1002
-
1003
- def full_analysis_pipeline(self, image_pil: Image.Image, questionnaire_data: Dict) -> Dict:
1004
- try:
1005
- saved_path = self.save_and_commit_image(image_pil)
1006
- visual_results = self.perform_visual_analysis(image_pil)
1007
-
1008
- pi = questionnaire_data or {}
1009
- patient_info = (
1010
- f"Age: {pi.get('age','N/A')}, "
1011
- f"Diabetic: {pi.get('diabetic','N/A')}, "
1012
- f"Allergies: {pi.get('allergies','N/A')}, "
1013
- f"Date of Wound: {pi.get('date_of_injury','N/A')}, "
1014
- f"Professional Care: {pi.get('professional_care','N/A')}, "
1015
- f"Oozing/Bleeding: {pi.get('oozing_bleeding','N/A')}, "
1016
- f"Infection: {pi.get('infection','N/A')}, "
1017
- f"Moisture: {pi.get('moisture','N/A')}"
1018
- )
1019
-
1020
- query = (
1021
- f"best practices for managing a {visual_results.get('wound_type','Unknown')} "
1022
- f"with moisture '{pi.get('moisture','unknown')}' and infection '{pi.get('infection','unknown')}' "
1023
- f"in a diabetic status '{pi.get('diabetic','unknown')}'"
1024
- )
1025
- guideline_context = self.query_guidelines(query)
1026
 
1027
- report = self.generate_final_report(patient_info, visual_results, guideline_context, image_pil)
 
 
 
 
1028
 
1029
- return {
1030
- "success": True,
1031
- "visual_analysis": visual_results,
1032
- "report": report,
1033
- "saved_image_path": saved_path,
1034
- "guideline_context": (guideline_context or "")[:500] + (
1035
- "..." if guideline_context and len(guideline_context) > 500 else ""
1036
- ),
1037
- }
1038
- except Exception as e:
1039
- logging.error(f"Pipeline error: {e}")
1040
- return {
1041
- "success": False,
1042
- "error": str(e),
1043
- "visual_analysis": {},
1044
- "report": f"Analysis failed: {str(e)}",
1045
- "saved_image_path": None,
1046
- "guideline_context": "",
1047
- }
1048
 
1049
- def analyze_wound(self, image, questionnaire_data: Dict) -> Dict:
1050
- try:
1051
- if isinstance(image, str):
1052
- if not os.path.exists(image):
1053
- raise ValueError(f"Image file not found: {image}")
1054
- image_pil = Image.open(image)
1055
- elif isinstance(image, Image.Image):
1056
- image_pil = image
1057
- elif isinstance(image, np.ndarray):
1058
- image_pil = Image.fromarray(image)
1059
- else:
1060
- raise ValueError(f"Unsupported image type: {type(image)}")
1061
 
1062
- return self.full_analysis_pipeline(image_pil, questionnaire_data or {})
1063
- except Exception as e:
1064
- logging.error(f"Wound analysis error: {e}")
1065
- return {
1066
- "success": False,
1067
- "error": str(e),
1068
- "visual_analysis": {},
1069
- "report": f"Analysis initialization failed: {str(e)}",
1070
- "saved_image_path": None,
1071
- "guideline_context": "",
1072
- }
 
1
+ #!/usr/bin/env python3
 
 
2
 
3
  import os
4
  import logging
5
+ import traceback
6
+ import gradio as gr
7
+ import spaces
8
 
9
+ # Import internal modules
10
+ from src.config import Config
11
+ from src.database import DatabaseManager
12
+ from src.auth import AuthManager
13
+ from src.ai_processor import AIProcessor
14
+ from src.ui_components_original import UIComponents
15
 
16
+ # Logging setup
17
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
 
 
18
 
19
+ class SmartHealApp:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  def __init__(self):
21
+ self.ui_components = None
22
+ try:
23
+ self.config = Config()
24
+ self.database_manager = DatabaseManager(self.config.get_mysql_config())
25
+ self.auth_manager = AuthManager(self.database_manager)
26
+ self.ai_processor = AIProcessor()
27
+ self.ui_components = UIComponents(
28
+ self.auth_manager,
29
+ self.database_manager,
30
+ self.ai_processor
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  )
32
+ logging.info("✅ SmartHeal App initialized successfully.")
 
 
 
33
  except Exception as e:
34
+ logging.error(f"Initialization error: {e}")
35
+ traceback.print_exc()
36
+ raise
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
+ def launch(self, port=7860, share=True):
39
+ interface = self.ui_components.create_interface()
40
+ interface.launch(
41
+ share=share
42
+ )
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
+ def main():
46
+ try:
47
+ app = SmartHealApp()
48
+ app.launch()
49
+ except KeyboardInterrupt:
50
+ logging.info("App interrupted by user.")
51
+ except Exception:
52
+ logging.error("App failed to start.")
53
+ raise
 
 
 
54
 
55
+ if __name__ == "__main__":
56
+ main()