Spaces:
Running
Running
Update src/ai_processor.py
Browse files- src/ai_processor.py +58 -75
src/ai_processor.py
CHANGED
|
@@ -36,17 +36,14 @@ knowledge_base_cache = {}
|
|
| 36 |
|
| 37 |
# =============== LAZY LOADING FUNCTIONS (CPU-SAFE) ===============
|
| 38 |
def load_yolo_model(yolo_model_path):
|
| 39 |
-
"""Lazy import and load YOLO model to avoid CUDA initialization."""
|
| 40 |
from ultralytics import YOLO
|
| 41 |
return YOLO(yolo_model_path)
|
| 42 |
|
| 43 |
def load_segmentation_model(seg_model_path):
|
| 44 |
-
"""Lazy import and load segmentation model."""
|
| 45 |
from tensorflow.keras.models import load_model
|
| 46 |
return load_model(seg_model_path, compile=False)
|
| 47 |
|
| 48 |
def load_classification_pipeline(hf_token):
|
| 49 |
-
"""Lazy import and load classification pipeline (CPU only)."""
|
| 50 |
from transformers import pipeline
|
| 51 |
return pipeline(
|
| 52 |
"image-classification",
|
|
@@ -56,7 +53,6 @@ def load_classification_pipeline(hf_token):
|
|
| 56 |
)
|
| 57 |
|
| 58 |
def load_embedding_model():
|
| 59 |
-
"""Load embedding model for knowledge base."""
|
| 60 |
return HuggingFaceEmbeddings(
|
| 61 |
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 62 |
model_kwargs={"device": "cpu"}
|
|
@@ -64,34 +60,28 @@ def load_embedding_model():
|
|
| 64 |
|
| 65 |
# =============== MODEL INITIALIZATION ===============
|
| 66 |
def initialize_cpu_models():
|
| 67 |
-
"""Initialize all CPU-only models once."""
|
| 68 |
global models_cache
|
| 69 |
-
|
| 70 |
if HF_TOKEN:
|
| 71 |
HfFolder.save_token(HF_TOKEN)
|
| 72 |
logging.info("✅ HuggingFace token set")
|
| 73 |
-
|
| 74 |
if "det" not in models_cache:
|
| 75 |
try:
|
| 76 |
models_cache["det"] = load_yolo_model(YOLO_MODEL_PATH)
|
| 77 |
logging.info("✅ YOLO model loaded (CPU only)")
|
| 78 |
except Exception as e:
|
| 79 |
logging.error(f"YOLO load failed: {e}")
|
| 80 |
-
|
| 81 |
if "seg" not in models_cache:
|
| 82 |
try:
|
| 83 |
models_cache["seg"] = load_segmentation_model(SEG_MODEL_PATH)
|
| 84 |
logging.info("✅ Segmentation model loaded (CPU)")
|
| 85 |
except Exception as e:
|
| 86 |
logging.warning(f"Segmentation model not available: {e}")
|
| 87 |
-
|
| 88 |
if "cls" not in models_cache:
|
| 89 |
try:
|
| 90 |
models_cache["cls"] = load_classification_pipeline(HF_TOKEN)
|
| 91 |
logging.info("✅ Classification pipeline loaded (CPU)")
|
| 92 |
except Exception as e:
|
| 93 |
logging.warning(f"Classification pipeline not available: {e}")
|
| 94 |
-
|
| 95 |
if "embedding_model" not in models_cache:
|
| 96 |
try:
|
| 97 |
models_cache["embedding_model"] = load_embedding_model()
|
|
@@ -100,11 +90,9 @@ def initialize_cpu_models():
|
|
| 100 |
logging.warning(f"Embedding model not available: {e}")
|
| 101 |
|
| 102 |
def setup_knowledge_base():
|
| 103 |
-
"""Load PDF documents and create FAISS vector store."""
|
| 104 |
global knowledge_base_cache
|
| 105 |
if "vector_store" in knowledge_base_cache:
|
| 106 |
return
|
| 107 |
-
|
| 108 |
docs = []
|
| 109 |
for pdf_path in GUIDELINE_PDFS:
|
| 110 |
if os.path.exists(pdf_path):
|
|
@@ -114,7 +102,6 @@ def setup_knowledge_base():
|
|
| 114 |
logging.info(f"Loaded PDF: {pdf_path}")
|
| 115 |
except Exception as e:
|
| 116 |
logging.warning(f"Failed to load PDF {pdf_path}: {e}")
|
| 117 |
-
|
| 118 |
if docs and "embedding_model" in models_cache:
|
| 119 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 120 |
chunks = splitter.split_documents(docs)
|
|
@@ -124,7 +111,7 @@ def setup_knowledge_base():
|
|
| 124 |
knowledge_base_cache["vector_store"] = None
|
| 125 |
logging.warning("Knowledge base unavailable")
|
| 126 |
|
| 127 |
-
# Initialize models
|
| 128 |
initialize_cpu_models()
|
| 129 |
setup_knowledge_base()
|
| 130 |
|
|
@@ -138,8 +125,6 @@ def generate_medgemma_report(
|
|
| 138 |
segmentation_image_path,
|
| 139 |
max_new_tokens=None,
|
| 140 |
):
|
| 141 |
-
"""GPU-only function for MedGemma report generation."""
|
| 142 |
-
# Import GPU libraries ONLY here
|
| 143 |
import torch
|
| 144 |
from transformers import pipeline
|
| 145 |
from PIL import Image
|
|
@@ -156,7 +141,6 @@ def generate_medgemma_report(
|
|
| 156 |
"patient context."
|
| 157 |
)
|
| 158 |
|
| 159 |
-
# Lazy-load MedGemma pipeline on GPU
|
| 160 |
if not hasattr(generate_medgemma_report, "_pipe"):
|
| 161 |
try:
|
| 162 |
generate_medgemma_report._pipe = pipeline(
|
|
@@ -174,18 +158,15 @@ def generate_medgemma_report(
|
|
| 174 |
|
| 175 |
pipe = generate_medgemma_report._pipe
|
| 176 |
|
| 177 |
-
# Compose messages
|
| 178 |
msgs = [
|
| 179 |
{"role": "system", "content": [{"type": "text", "text": default_system_prompt}]},
|
| 180 |
{"role": "user", "content": []},
|
| 181 |
]
|
| 182 |
|
| 183 |
-
# Attach images if available
|
| 184 |
for path in (detection_image_path, segmentation_image_path):
|
| 185 |
if path and os.path.exists(path):
|
| 186 |
msgs[1]["content"].append({"type": "image", "image": Image.open(path)})
|
| 187 |
|
| 188 |
-
# Attach text prompt
|
| 189 |
prompt = f"## Patient\n{patient_info}\n## Wound Type: {visual_results.get('wound_type','Unknown')}"
|
| 190 |
msgs[1]["content"].append({"type": "text", "text": prompt})
|
| 191 |
|
|
@@ -207,7 +188,6 @@ class AIProcessor:
|
|
| 207 |
self.hf_token = HF_TOKEN
|
| 208 |
|
| 209 |
def perform_visual_analysis(self, image_pil: Image.Image) -> dict:
|
| 210 |
-
"""Detect & segment on CPU; return metrics + file paths."""
|
| 211 |
img_cv = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
|
| 212 |
yolo = self.models_cache.get("det")
|
| 213 |
if yolo is None:
|
|
@@ -217,40 +197,57 @@ class AIProcessor:
|
|
| 217 |
if not res.boxes:
|
| 218 |
raise ValueError("No wound detected")
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
|
| 223 |
# Save detection overlay
|
| 224 |
det_vis = img_cv.copy()
|
| 225 |
-
cv2.rectangle(det_vis, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 226 |
os.makedirs(f"{self.uploads_dir}/analysis", exist_ok=True)
|
| 227 |
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 228 |
det_path = f"{self.uploads_dir}/analysis/detection_{ts}.png"
|
| 229 |
cv2.imwrite(det_path, det_vis)
|
| 230 |
|
| 231 |
# Segmentation
|
| 232 |
-
length
|
| 233 |
seg_path = None
|
| 234 |
seg_model = self.models_cache.get("seg")
|
| 235 |
if seg_model:
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
# Classification
|
| 256 |
wound_type = "Unknown"
|
|
@@ -258,9 +255,10 @@ class AIProcessor:
|
|
| 258 |
if cls_pipe:
|
| 259 |
try:
|
| 260 |
preds = cls_pipe(Image.fromarray(cv2.cvtColor(region, cv2.COLOR_BGR2RGB)))
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
| 264 |
|
| 265 |
return {
|
| 266 |
"wound_type": wound_type,
|
|
@@ -273,7 +271,6 @@ class AIProcessor:
|
|
| 273 |
}
|
| 274 |
|
| 275 |
def query_guidelines(self, query: str) -> str:
|
| 276 |
-
"""Query the knowledge base for relevant information."""
|
| 277 |
vs = self.knowledge_base_cache.get("vector_store")
|
| 278 |
if not vs:
|
| 279 |
return "Clinical guidelines unavailable"
|
|
@@ -282,39 +279,28 @@ class AIProcessor:
|
|
| 282 |
f"Source: {d.metadata.get('source','?')}, Page: {d.metadata.get('page','?')}\n{d.page_content}" for d in docs
|
| 283 |
)
|
| 284 |
|
| 285 |
-
def generate_final_report(
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
det = visual_results.get("detection_image_path", "")
|
| 290 |
-
seg = visual_results.get("segmentation_image_path", "")
|
| 291 |
-
|
| 292 |
-
report = generate_medgemma_report(patient_info, visual_results, guideline_context, det, seg, max_new_tokens)
|
| 293 |
if report:
|
| 294 |
return report
|
| 295 |
return self._generate_fallback_report(patient_info, visual_results, guideline_context)
|
| 296 |
|
| 297 |
-
def _generate_fallback_report(
|
| 298 |
-
self, patient_info: str, visual_results: dict, guideline_context: str
|
| 299 |
-
) -> str:
|
| 300 |
-
"""Generate fallback report if MedGemma fails."""
|
| 301 |
-
dp = visual_results.get('detection_image_path','N/A')
|
| 302 |
-
sp = visual_results.get('segmentation_image_path','N/A')
|
| 303 |
return (
|
| 304 |
f"# Fallback Report\n{patient_info}\n"
|
| 305 |
f"Type: {visual_results.get('wound_type','Unknown')}\n"
|
| 306 |
-
f"Detection Image: {
|
| 307 |
-
f"Segmentation Image: {
|
| 308 |
f"Guidelines: {guideline_context[:200]}..."
|
| 309 |
)
|
| 310 |
|
| 311 |
def save_and_commit_image(self, image_pil: Image.Image) -> str:
|
| 312 |
-
"""Save image locally and optionally commit to HF dataset."""
|
| 313 |
os.makedirs(self.uploads_dir, exist_ok=True)
|
| 314 |
fn = f"{datetime.now():%Y%m%d_%H%M%S}.png"
|
| 315 |
path = os.path.join(self.uploads_dir, fn)
|
| 316 |
image_pil.convert("RGB").save(path)
|
| 317 |
-
|
| 318 |
if self.hf_token and self.dataset_id:
|
| 319 |
try:
|
| 320 |
HfApi().upload_file(
|
|
@@ -328,27 +314,24 @@ class AIProcessor:
|
|
| 328 |
logging.warning(f"HF upload failed: {e}")
|
| 329 |
return path
|
| 330 |
|
| 331 |
-
def full_analysis_pipeline(self,
|
| 332 |
-
"""Run full analysis pipeline."""
|
| 333 |
try:
|
| 334 |
-
saved = self.save_and_commit_image(
|
| 335 |
-
vis = self.perform_visual_analysis(
|
| 336 |
info = ", ".join(f"{k}:{v}" for k,v in questionnaire_data.items() if v)
|
| 337 |
gc = self.query_guidelines(info)
|
| 338 |
-
report = self.generate_final_report(info, vis, gc,
|
| 339 |
return {'success': True, 'visual_analysis': vis, 'report': report, 'saved_image_path': saved}
|
| 340 |
except Exception as e:
|
| 341 |
logging.error(f"Pipeline error: {e}")
|
| 342 |
return {'success': False, 'error': str(e)}
|
| 343 |
|
| 344 |
-
def analyze_wound(self, image, questionnaire_data
|
| 345 |
-
"""Main analysis entry point."""
|
| 346 |
if isinstance(image, str):
|
| 347 |
image = Image.open(image)
|
| 348 |
return self.full_analysis_pipeline(image, questionnaire_data)
|
| 349 |
|
| 350 |
-
def _assess_risk_legacy(self, questionnaire_data
|
| 351 |
-
"""Legacy risk assessment function."""
|
| 352 |
risk_factors, risk_score = [], 0
|
| 353 |
try:
|
| 354 |
age = questionnaire_data.get('patient_age', 0)
|
|
@@ -377,4 +360,4 @@ class AIProcessor:
|
|
| 377 |
return {'risk_score': risk_score, 'risk_level': level, 'risk_factors': risk_factors}
|
| 378 |
except Exception as e:
|
| 379 |
logging.error(f"Risk assessment error: {e}")
|
| 380 |
-
return {'risk_score': 0, 'risk_level': 'Unknown', 'risk_factors': []}
|
|
|
|
| 36 |
|
| 37 |
# =============== LAZY LOADING FUNCTIONS (CPU-SAFE) ===============
|
| 38 |
def load_yolo_model(yolo_model_path):
|
|
|
|
| 39 |
from ultralytics import YOLO
|
| 40 |
return YOLO(yolo_model_path)
|
| 41 |
|
| 42 |
def load_segmentation_model(seg_model_path):
|
|
|
|
| 43 |
from tensorflow.keras.models import load_model
|
| 44 |
return load_model(seg_model_path, compile=False)
|
| 45 |
|
| 46 |
def load_classification_pipeline(hf_token):
|
|
|
|
| 47 |
from transformers import pipeline
|
| 48 |
return pipeline(
|
| 49 |
"image-classification",
|
|
|
|
| 53 |
)
|
| 54 |
|
| 55 |
def load_embedding_model():
|
|
|
|
| 56 |
return HuggingFaceEmbeddings(
|
| 57 |
model_name="sentence-transformers/all-MiniLM-L6-v2",
|
| 58 |
model_kwargs={"device": "cpu"}
|
|
|
|
| 60 |
|
| 61 |
# =============== MODEL INITIALIZATION ===============
|
| 62 |
def initialize_cpu_models():
|
|
|
|
| 63 |
global models_cache
|
|
|
|
| 64 |
if HF_TOKEN:
|
| 65 |
HfFolder.save_token(HF_TOKEN)
|
| 66 |
logging.info("✅ HuggingFace token set")
|
|
|
|
| 67 |
if "det" not in models_cache:
|
| 68 |
try:
|
| 69 |
models_cache["det"] = load_yolo_model(YOLO_MODEL_PATH)
|
| 70 |
logging.info("✅ YOLO model loaded (CPU only)")
|
| 71 |
except Exception as e:
|
| 72 |
logging.error(f"YOLO load failed: {e}")
|
|
|
|
| 73 |
if "seg" not in models_cache:
|
| 74 |
try:
|
| 75 |
models_cache["seg"] = load_segmentation_model(SEG_MODEL_PATH)
|
| 76 |
logging.info("✅ Segmentation model loaded (CPU)")
|
| 77 |
except Exception as e:
|
| 78 |
logging.warning(f"Segmentation model not available: {e}")
|
|
|
|
| 79 |
if "cls" not in models_cache:
|
| 80 |
try:
|
| 81 |
models_cache["cls"] = load_classification_pipeline(HF_TOKEN)
|
| 82 |
logging.info("✅ Classification pipeline loaded (CPU)")
|
| 83 |
except Exception as e:
|
| 84 |
logging.warning(f"Classification pipeline not available: {e}")
|
|
|
|
| 85 |
if "embedding_model" not in models_cache:
|
| 86 |
try:
|
| 87 |
models_cache["embedding_model"] = load_embedding_model()
|
|
|
|
| 90 |
logging.warning(f"Embedding model not available: {e}")
|
| 91 |
|
| 92 |
def setup_knowledge_base():
|
|
|
|
| 93 |
global knowledge_base_cache
|
| 94 |
if "vector_store" in knowledge_base_cache:
|
| 95 |
return
|
|
|
|
| 96 |
docs = []
|
| 97 |
for pdf_path in GUIDELINE_PDFS:
|
| 98 |
if os.path.exists(pdf_path):
|
|
|
|
| 102 |
logging.info(f"Loaded PDF: {pdf_path}")
|
| 103 |
except Exception as e:
|
| 104 |
logging.warning(f"Failed to load PDF {pdf_path}: {e}")
|
|
|
|
| 105 |
if docs and "embedding_model" in models_cache:
|
| 106 |
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
| 107 |
chunks = splitter.split_documents(docs)
|
|
|
|
| 111 |
knowledge_base_cache["vector_store"] = None
|
| 112 |
logging.warning("Knowledge base unavailable")
|
| 113 |
|
| 114 |
+
# Initialize models at startup
|
| 115 |
initialize_cpu_models()
|
| 116 |
setup_knowledge_base()
|
| 117 |
|
|
|
|
| 125 |
segmentation_image_path,
|
| 126 |
max_new_tokens=None,
|
| 127 |
):
|
|
|
|
|
|
|
| 128 |
import torch
|
| 129 |
from transformers import pipeline
|
| 130 |
from PIL import Image
|
|
|
|
| 141 |
"patient context."
|
| 142 |
)
|
| 143 |
|
|
|
|
| 144 |
if not hasattr(generate_medgemma_report, "_pipe"):
|
| 145 |
try:
|
| 146 |
generate_medgemma_report._pipe = pipeline(
|
|
|
|
| 158 |
|
| 159 |
pipe = generate_medgemma_report._pipe
|
| 160 |
|
|
|
|
| 161 |
msgs = [
|
| 162 |
{"role": "system", "content": [{"type": "text", "text": default_system_prompt}]},
|
| 163 |
{"role": "user", "content": []},
|
| 164 |
]
|
| 165 |
|
|
|
|
| 166 |
for path in (detection_image_path, segmentation_image_path):
|
| 167 |
if path and os.path.exists(path):
|
| 168 |
msgs[1]["content"].append({"type": "image", "image": Image.open(path)})
|
| 169 |
|
|
|
|
| 170 |
prompt = f"## Patient\n{patient_info}\n## Wound Type: {visual_results.get('wound_type','Unknown')}"
|
| 171 |
msgs[1]["content"].append({"type": "text", "text": prompt})
|
| 172 |
|
|
|
|
| 188 |
self.hf_token = HF_TOKEN
|
| 189 |
|
| 190 |
def perform_visual_analysis(self, image_pil: Image.Image) -> dict:
|
|
|
|
| 191 |
img_cv = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
|
| 192 |
yolo = self.models_cache.get("det")
|
| 193 |
if yolo is None:
|
|
|
|
| 197 |
if not res.boxes:
|
| 198 |
raise ValueError("No wound detected")
|
| 199 |
|
| 200 |
+
# Safely unpack detection boxes
|
| 201 |
+
try:
|
| 202 |
+
xyxy = res.boxes.xyxy.cpu().numpy()
|
| 203 |
+
if xyxy.shape[0] == 0:
|
| 204 |
+
raise ValueError("No detection boxes found")
|
| 205 |
+
x1, y1, x2, y2 = xyxy[0]
|
| 206 |
+
except Exception as e:
|
| 207 |
+
logging.warning(f"Error unpacking detection boxes: {e}")
|
| 208 |
+
raise
|
| 209 |
+
|
| 210 |
+
region = img_cv[int(y1):int(y2), int(x1):int(x2)]
|
| 211 |
|
| 212 |
# Save detection overlay
|
| 213 |
det_vis = img_cv.copy()
|
| 214 |
+
cv2.rectangle(det_vis, (int(x1), int(y1)), (int(x2), int(y2)), (0, 255, 0), 2)
|
| 215 |
os.makedirs(f"{self.uploads_dir}/analysis", exist_ok=True)
|
| 216 |
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 217 |
det_path = f"{self.uploads_dir}/analysis/detection_{ts}.png"
|
| 218 |
cv2.imwrite(det_path, det_vis)
|
| 219 |
|
| 220 |
# Segmentation
|
| 221 |
+
length, breadth, area = 0, 0, 0
|
| 222 |
seg_path = None
|
| 223 |
seg_model = self.models_cache.get("seg")
|
| 224 |
if seg_model:
|
| 225 |
+
try:
|
| 226 |
+
h, w = seg_model.input_shape[1:3]
|
| 227 |
+
inp = cv2.resize(region, (w, h)) / 255.0
|
| 228 |
+
mask_pred = seg_model.predict(inp[None])
|
| 229 |
+
if mask_pred.shape[1:3] != (h, w):
|
| 230 |
+
# Resize if needed
|
| 231 |
+
mask_pred = np.squeeze(mask_pred)
|
| 232 |
+
mask = (mask_pred[0, :, :, 0] > 0.5).astype(np.uint8)
|
| 233 |
+
mask_rs = cv2.resize(mask, (region.shape[1], region.shape[0]), interpolation=cv2.INTER_NEAREST)
|
| 234 |
+
# Save segmentation visualization
|
| 235 |
+
ov = region.copy()
|
| 236 |
+
ov[mask_rs == 1] = [0, 0, 255]
|
| 237 |
+
seg_vis = cv2.addWeighted(region, 0.7, ov, 0.3, 0)
|
| 238 |
+
seg_path = f"{self.uploads_dir}/analysis/segmentation_{ts}.png"
|
| 239 |
+
cv2.imwrite(seg_path, seg_vis)
|
| 240 |
+
|
| 241 |
+
# Find contours
|
| 242 |
+
cnts, _ = cv2.findContours(mask_rs, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 243 |
+
if cnts:
|
| 244 |
+
cnt = max(cnts, key=cv2.contourArea)
|
| 245 |
+
x, y, w_box, h_box = cv2.boundingRect(cnt)
|
| 246 |
+
length = round(h_box / self.px_per_cm, 2)
|
| 247 |
+
breadth = round(w_box / self.px_per_cm, 2)
|
| 248 |
+
area = round(cv2.contourArea(cnt) / (self.px_per_cm ** 2), 2)
|
| 249 |
+
except Exception as e:
|
| 250 |
+
logging.warning(f"Segmentation processing error: {e}")
|
| 251 |
|
| 252 |
# Classification
|
| 253 |
wound_type = "Unknown"
|
|
|
|
| 255 |
if cls_pipe:
|
| 256 |
try:
|
| 257 |
preds = cls_pipe(Image.fromarray(cv2.cvtColor(region, cv2.COLOR_BGR2RGB)))
|
| 258 |
+
if preds:
|
| 259 |
+
wound_type = max(preds, key=lambda x: x["score"])["label"]
|
| 260 |
+
except Exception as e:
|
| 261 |
+
logging.warning(f"Classification error: {e}")
|
| 262 |
|
| 263 |
return {
|
| 264 |
"wound_type": wound_type,
|
|
|
|
| 271 |
}
|
| 272 |
|
| 273 |
def query_guidelines(self, query: str) -> str:
|
|
|
|
| 274 |
vs = self.knowledge_base_cache.get("vector_store")
|
| 275 |
if not vs:
|
| 276 |
return "Clinical guidelines unavailable"
|
|
|
|
| 279 |
f"Source: {d.metadata.get('source','?')}, Page: {d.metadata.get('page','?')}\n{d.page_content}" for d in docs
|
| 280 |
)
|
| 281 |
|
| 282 |
+
def generate_final_report(self, patient_info, visual_results, guideline_context, image_pil, max_new_tokens=None):
|
| 283 |
+
det_path = visual_results.get("detection_image_path", "")
|
| 284 |
+
seg_path = visual_results.get("segmentation_image_path", "")
|
| 285 |
+
report = generate_medgemma_report(patient_info, visual_results, guideline_context, det_path, seg_path, max_new_tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
if report:
|
| 287 |
return report
|
| 288 |
return self._generate_fallback_report(patient_info, visual_results, guideline_context)
|
| 289 |
|
| 290 |
+
def _generate_fallback_report(self, patient_info, visual_results, guideline_context):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
return (
|
| 292 |
f"# Fallback Report\n{patient_info}\n"
|
| 293 |
f"Type: {visual_results.get('wound_type','Unknown')}\n"
|
| 294 |
+
f"Detection Image: {visual_results.get('detection_image_path','N/A')}\n"
|
| 295 |
+
f"Segmentation Image: {visual_results.get('segmentation_image_path','N/A')}\n"
|
| 296 |
f"Guidelines: {guideline_context[:200]}..."
|
| 297 |
)
|
| 298 |
|
| 299 |
def save_and_commit_image(self, image_pil: Image.Image) -> str:
|
|
|
|
| 300 |
os.makedirs(self.uploads_dir, exist_ok=True)
|
| 301 |
fn = f"{datetime.now():%Y%m%d_%H%M%S}.png"
|
| 302 |
path = os.path.join(self.uploads_dir, fn)
|
| 303 |
image_pil.convert("RGB").save(path)
|
|
|
|
| 304 |
if self.hf_token and self.dataset_id:
|
| 305 |
try:
|
| 306 |
HfApi().upload_file(
|
|
|
|
| 314 |
logging.warning(f"HF upload failed: {e}")
|
| 315 |
return path
|
| 316 |
|
| 317 |
+
def full_analysis_pipeline(self, image, questionnaire_data):
|
|
|
|
| 318 |
try:
|
| 319 |
+
saved = self.save_and_commit_image(image)
|
| 320 |
+
vis = self.perform_visual_analysis(image)
|
| 321 |
info = ", ".join(f"{k}:{v}" for k,v in questionnaire_data.items() if v)
|
| 322 |
gc = self.query_guidelines(info)
|
| 323 |
+
report = self.generate_final_report(info, vis, gc, image)
|
| 324 |
return {'success': True, 'visual_analysis': vis, 'report': report, 'saved_image_path': saved}
|
| 325 |
except Exception as e:
|
| 326 |
logging.error(f"Pipeline error: {e}")
|
| 327 |
return {'success': False, 'error': str(e)}
|
| 328 |
|
| 329 |
+
def analyze_wound(self, image, questionnaire_data):
|
|
|
|
| 330 |
if isinstance(image, str):
|
| 331 |
image = Image.open(image)
|
| 332 |
return self.full_analysis_pipeline(image, questionnaire_data)
|
| 333 |
|
| 334 |
+
def _assess_risk_legacy(self, questionnaire_data):
|
|
|
|
| 335 |
risk_factors, risk_score = [], 0
|
| 336 |
try:
|
| 337 |
age = questionnaire_data.get('patient_age', 0)
|
|
|
|
| 360 |
return {'risk_score': risk_score, 'risk_level': level, 'risk_factors': risk_factors}
|
| 361 |
except Exception as e:
|
| 362 |
logging.error(f"Risk assessment error: {e}")
|
| 363 |
+
return {'risk_score': 0, 'risk_level': 'Unknown', 'risk_factors': []}
|