Spaces:
Running
Running
Update src/ai_processor.py
Browse files- src/ai_processor.py +53 -105
src/ai_processor.py
CHANGED
|
@@ -140,116 +140,76 @@ Keep to 220–300 words. Do NOT provide diagnosis. Avoid contraindicated advice.
|
|
| 140 |
|
| 141 |
# ---------- MedGemma-only text generator ----------
|
| 142 |
@_SPACES_GPU(enable_queue=True)
|
| 143 |
-
def
|
| 144 |
-
prompt: str,
|
| 145 |
-
image_pil, # PIL.Image (the wound image)
|
| 146 |
-
model_id: str | None = None, # e.g. "unsloth/medgemma-4b-it-bnb-4bit"
|
| 147 |
-
max_new_tokens: int = 256,
|
| 148 |
-
token: str | None = None,
|
| 149 |
-
) -> str:
|
| 150 |
-
"""
|
| 151 |
-
Vision LLM via Transformers pipeline using the "messages" format:
|
| 152 |
-
[{"role":"user","content":[{"type":"image","image": PIL}, {"type":"text","text": "..."}]}]
|
| 153 |
-
Returns a generated string.
|
| 154 |
-
"""
|
| 155 |
import os, torch
|
| 156 |
from transformers import pipeline
|
| 157 |
-
try:
|
| 158 |
-
from transformers import BitsAndBytesConfig # only needed for 4-bit
|
| 159 |
-
except Exception:
|
| 160 |
-
BitsAndBytesConfig = None
|
| 161 |
|
| 162 |
-
#
|
| 163 |
-
|
| 164 |
-
|
| 165 |
use_cuda = torch.cuda.is_available()
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
# <<< END OF FIX >>>
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
# Build messages in the doc format
|
| 184 |
messages = [{
|
| 185 |
"role": "user",
|
| 186 |
"content": [
|
| 187 |
-
{"type": "image", "image": image_pil},
|
| 188 |
{"type": "text", "text": prompt},
|
| 189 |
],
|
| 190 |
}]
|
| 191 |
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
trust_remote_code=True,
|
| 198 |
-
)
|
| 199 |
|
| 200 |
-
#
|
| 201 |
-
if
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
except TypeError:
|
| 205 |
-
pipe_kwargs["use_auth_token"] = hf_token
|
| 206 |
-
|
| 207 |
-
# If this is the 4-bit Unsloth build, attach quantization (requires CUDA + bitsandbytes)
|
| 208 |
-
if "bnb-4bit" in mid.lower():
|
| 209 |
-
if not use_cuda or BitsAndBytesConfig is None:
|
| 210 |
-
raise RuntimeError("Unsloth 4-bit requires CUDA + bitsandbytes; no GPU available.")
|
| 211 |
-
bnb = BitsAndBytesConfig(
|
| 212 |
-
load_in_4bit=True,
|
| 213 |
-
bnb_4bit_quant_type="nf4",
|
| 214 |
-
bnb_4bit_use_double_quant=True,
|
| 215 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 216 |
-
)
|
| 217 |
-
pipe_kwargs["model_kwargs"] = {"quantization_config": bnb}
|
| 218 |
-
|
| 219 |
-
# Create pipeline and run with messages
|
| 220 |
-
p = pipeline(**pipe_kwargs)
|
| 221 |
-
out = p(
|
| 222 |
-
text=messages,
|
| 223 |
-
max_new_tokens=int(max_new_tokens or 256),
|
| 224 |
-
do_sample=False,
|
| 225 |
-
temperature=0.2,
|
| 226 |
-
return_full_text=False, # we just want the answer
|
| 227 |
-
)
|
| 228 |
-
|
| 229 |
-
# Normalize output to a string
|
| 230 |
-
if isinstance(out, list):
|
| 231 |
-
# pipelines often return a list of strings or dicts; handle both
|
| 232 |
-
first = out[0]
|
| 233 |
-
text = first.get("generated_text") if isinstance(first, dict) else str(first)
|
| 234 |
-
else:
|
| 235 |
-
text = str(out)
|
| 236 |
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
def generate_medgemma_report(
|
| 243 |
-
patient_info: str,
|
| 244 |
-
visual_results: Dict,
|
| 245 |
-
guideline_context: str,
|
| 246 |
-
image_pil, # keep passing the PIL image
|
| 247 |
-
max_new_tokens: int | None = None,
|
| 248 |
-
) -> str:
|
| 249 |
if os.getenv("SMARTHEAL_ENABLE_VLM", "1") != "1":
|
| 250 |
return "⚠️ VLM disabled"
|
| 251 |
|
| 252 |
-
# Build your prompt as before
|
| 253 |
uprompt = SMARTHEAL_USER_PREFIX.format(
|
| 254 |
patient_info=patient_info,
|
| 255 |
wound_type=visual_results.get("wound_type", "Unknown"),
|
|
@@ -261,29 +221,17 @@ def generate_medgemma_report(
|
|
| 261 |
guideline_context=(guideline_context or "")[:900],
|
| 262 |
)
|
| 263 |
prompt = f"{SMARTHEAL_SYSTEM_PROMPT}\n\n{uprompt}\n\nAnswer:"
|
| 264 |
-
|
| 265 |
model_id = os.getenv("SMARTHEAL_MEDGEMMA_MODEL", "unsloth/medgemma-4b-it-bnb-4bit")
|
| 266 |
max_new_tokens = max_new_tokens or int(os.getenv("SMARTHEAL_VLM_MAX_TOKENS", "600"))
|
| 267 |
|
| 268 |
try:
|
| 269 |
-
return
|
| 270 |
except Exception as e:
|
| 271 |
-
# Optional: automatic tiny fallback if CUDA/bnb/space issues show up
|
| 272 |
-
err = str(e)
|
| 273 |
-
if any(s in err for s in ("No space left", "bitsandbytes", "CUDA", "requires CUDA")):
|
| 274 |
-
try:
|
| 275 |
-
return _medgemma_generate_gpu_with_pipeline(
|
| 276 |
-
prompt, image_pil,
|
| 277 |
-
model_id="bczhou/tiny-llava-v1-hf", # ~1GB; CPU OK
|
| 278 |
-
max_new_tokens=max_new_tokens,
|
| 279 |
-
token=HF_TOKEN,
|
| 280 |
-
)
|
| 281 |
-
except Exception:
|
| 282 |
-
pass
|
| 283 |
logging.error(f"MedGemma pipeline failed: {e}", exc_info=True)
|
| 284 |
return "⚠️ VLM error"
|
| 285 |
|
| 286 |
|
|
|
|
| 287 |
# ---------- Input-shape helpers (avoid `.as_list()` on strings) ----------
|
| 288 |
def _shape_to_hw(shape) -> Tuple[Optional[int], Optional[int]]:
|
| 289 |
try:
|
|
|
|
| 140 |
|
| 141 |
# ---------- MedGemma-only text generator ----------
|
| 142 |
@_SPACES_GPU(enable_queue=True)
|
| 143 |
+
def _build_vlm_pipeline(model_id: str, token: str | None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
import os, torch
|
| 145 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
# don't mask CUDA here
|
| 148 |
+
os.environ.pop("CUDA_VISIBLE_DEVICES", None)
|
| 149 |
+
|
| 150 |
use_cuda = torch.cuda.is_available()
|
| 151 |
+
kwargs = dict(
|
| 152 |
+
task="image-text-to-text",
|
| 153 |
+
model=model_id,
|
| 154 |
+
trust_remote_code=True,
|
| 155 |
+
torch_dtype=(torch.bfloat16 if use_cuda else torch.float32),
|
| 156 |
+
device=(0 if use_cuda else -1),
|
| 157 |
+
)
|
|
|
|
| 158 |
|
| 159 |
+
if token:
|
| 160 |
+
try: kwargs["token"] = token
|
| 161 |
+
except TypeError: kwargs["use_auth_token"] = token
|
| 162 |
+
|
| 163 |
+
# if it's a 4-bit Unsloth build, attach bnb config (GPU required)
|
| 164 |
+
if "bnb-4bit" in model_id.lower() or "4bit" in model_id.lower():
|
| 165 |
+
if not use_cuda:
|
| 166 |
+
raise RuntimeError("CUDA not available for 4-bit quantized model.")
|
| 167 |
+
from transformers import BitsAndBytesConfig
|
| 168 |
+
kwargs["model_kwargs"] = {
|
| 169 |
+
"quantization_config": BitsAndBytesConfig(
|
| 170 |
+
load_in_4bit=True,
|
| 171 |
+
bnb_4bit_quant_type="nf4",
|
| 172 |
+
bnb_4bit_use_double_quant=True,
|
| 173 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 174 |
+
)
|
| 175 |
+
}
|
| 176 |
|
| 177 |
+
return pipeline(**kwargs)
|
| 178 |
+
|
| 179 |
+
def _vlm_generate_with_messages(prompt: str,
|
| 180 |
+
image_pil,
|
| 181 |
+
model_id: str,
|
| 182 |
+
max_new_tokens: int,
|
| 183 |
+
token: str | None) -> str:
|
| 184 |
+
# try preferred; on error, fall back to a tiny CPU-friendly VLM
|
| 185 |
+
try:
|
| 186 |
+
p = _build_vlm_pipeline(model_id or "unsloth/medgemma-4b-it-bnb-4bit", token)
|
| 187 |
+
except Exception:
|
| 188 |
+
p = _build_vlm_pipeline("bczhou/tiny-llava-v1-hf", None)
|
| 189 |
|
|
|
|
| 190 |
messages = [{
|
| 191 |
"role": "user",
|
| 192 |
"content": [
|
| 193 |
+
{"type": "image", "image": image_pil},
|
| 194 |
{"type": "text", "text": prompt},
|
| 195 |
],
|
| 196 |
}]
|
| 197 |
|
| 198 |
+
out = p(text=messages,
|
| 199 |
+
max_new_tokens=int(max_new_tokens or 256),
|
| 200 |
+
do_sample=False,
|
| 201 |
+
temperature=0.2,
|
| 202 |
+
return_full_text=False)
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
# robust extraction
|
| 205 |
+
if isinstance(out, list) and out and isinstance(out[0], dict) and "generated_text" in out[0]:
|
| 206 |
+
return (out[0]["generated_text"] or "").strip()
|
| 207 |
+
return (str(out) or "").strip() or "⚠️ Empty response"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
+
def generate_medgemma_report(patient_info, visual_results, guideline_context, image_pil, max_new_tokens=None) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
if os.getenv("SMARTHEAL_ENABLE_VLM", "1") != "1":
|
| 211 |
return "⚠️ VLM disabled"
|
| 212 |
|
|
|
|
| 213 |
uprompt = SMARTHEAL_USER_PREFIX.format(
|
| 214 |
patient_info=patient_info,
|
| 215 |
wound_type=visual_results.get("wound_type", "Unknown"),
|
|
|
|
| 221 |
guideline_context=(guideline_context or "")[:900],
|
| 222 |
)
|
| 223 |
prompt = f"{SMARTHEAL_SYSTEM_PROMPT}\n\n{uprompt}\n\nAnswer:"
|
|
|
|
| 224 |
model_id = os.getenv("SMARTHEAL_MEDGEMMA_MODEL", "unsloth/medgemma-4b-it-bnb-4bit")
|
| 225 |
max_new_tokens = max_new_tokens or int(os.getenv("SMARTHEAL_VLM_MAX_TOKENS", "600"))
|
| 226 |
|
| 227 |
try:
|
| 228 |
+
return _vlm_generate_with_messages(prompt, image_pil, model_id, max_new_tokens, os.getenv("HF_TOKEN"))
|
| 229 |
except Exception as e:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
logging.error(f"MedGemma pipeline failed: {e}", exc_info=True)
|
| 231 |
return "⚠️ VLM error"
|
| 232 |
|
| 233 |
|
| 234 |
+
|
| 235 |
# ---------- Input-shape helpers (avoid `.as_list()` on strings) ----------
|
| 236 |
def _shape_to_hw(shape) -> Tuple[Optional[int], Optional[int]]:
|
| 237 |
try:
|