SmartHeal commited on
Commit
68507da
·
verified ·
1 Parent(s): ccfac38

Update src/ai_processor.py

Browse files
Files changed (1) hide show
  1. src/ai_processor.py +176 -625
src/ai_processor.py CHANGED
@@ -1,37 +1,53 @@
1
- # smartheal_ai_processor.py
2
- # Verbose, instrumented version preserves public class/function names
3
- # Turn on deep logging: export LOGLEVEL=DEBUG SMARTHEAL_DEBUG=1
 
4
 
5
  import os
6
  import logging
7
- from datetime import datetime
8
- from typing import Optional, Dict, List, Tuple
9
-
10
- # ---- Environment defaults (do NOT globally hint CUDA here) ----
11
- os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
12
- LOGLEVEL = os.getenv("LOGLEVEL", "INFO").upper()
13
- SMARTHEAL_DEBUG = os.getenv("SMARTHEAL_DEBUG", "0") == "1"
14
-
15
  import cv2
16
  import numpy as np
17
  from PIL import Image
18
- from PIL.ExifTags import TAGS
 
 
 
19
 
20
- # --- Logging config ---
21
  logging.basicConfig(
22
- level=getattr(logging, LOGLEVEL, logging.INFO),
23
- format="%(asctime)s - %(levelname)s - %(message)s",
24
  )
25
 
26
- def _log_kv(prefix: str, kv: Dict):
27
- logging.debug(prefix + " | " + " | ".join(f"{k}={v}" for k, v in kv.items()))
28
-
29
- # --- Spaces GPU decorator (REQUIRED) ---
30
- from spaces import GPU as _SPACES_GPU
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- @_SPACES_GPU(enable_queue=True)
33
- def smartheal_gpu_stub(ping: int = 0) -> str:
34
- return "ready"
 
 
 
 
 
 
 
 
 
35
 
36
  # ---- Paths / constants ----
37
  UPLOADS_DIR = "uploads"
@@ -45,33 +61,9 @@ DATASET_ID = "SmartHeal/wound-image-uploads"
45
  DEFAULT_PX_PER_CM = 38.0
46
  PX_PER_CM_MIN, PX_PER_CM_MAX = 5.0, 1200.0
47
 
48
- # Segmentation preprocessing knobs
49
- SEG_EXPECTS_RGB = os.getenv("SEG_EXPECTS_RGB", "1") == "1" # most TF models trained on RGB
50
- SEG_NORM = os.getenv("SEG_NORM", "0to1") # "0to1" | "imagenet"
51
- SEG_THRESH = float(os.getenv("SEG_THRESH", "0.5"))
52
-
53
  models_cache: Dict[str, object] = {}
54
  knowledge_base_cache: Dict[str, object] = {}
55
 
56
- # ---------- Utilities to prevent CUDA in main process ----------
57
- from contextlib import contextmanager
58
-
59
- @contextmanager
60
- def _no_cuda_env():
61
- """
62
- Mask GPUs so any library imported/constructed in the main process
63
- cannot see CUDA (required for Spaces Stateless GPU).
64
- """
65
- prev = os.environ.get("CUDA_VISIBLE_DEVICES")
66
- os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
67
- try:
68
- yield
69
- finally:
70
- if prev is None:
71
- os.environ.pop("CUDA_VISIBLE_DEVICES", None)
72
- else:
73
- os.environ["CUDA_VISIBLE_DEVICES"] = prev
74
-
75
  # ---------- Lazy imports (wrapped where needed) ----------
76
  def _import_ultralytics():
77
  # Prevent Ultralytics from probing CUDA on import
@@ -80,33 +72,40 @@ def _import_ultralytics():
80
  return YOLO
81
 
82
  def _import_tf_loader():
83
- import tensorflow as tf
84
- tf.config.set_visible_devices([], "GPU")
85
- from tensorflow.keras.models import load_model
 
 
86
  return load_model
87
 
88
  def _import_hf_cls():
89
- from transformers import pipeline
 
90
  return pipeline
91
 
92
  def _import_embeddings():
93
- from langchain_community.embeddings import HuggingFaceEmbeddings
 
94
  return HuggingFaceEmbeddings
95
 
96
  def _import_langchain_pdf():
97
- from langchain_community.document_loaders import PyPDFLoader
 
98
  return PyPDFLoader
99
 
100
  def _import_langchain_faiss():
101
- from langchain_community.vectorstores import FAISS
 
102
  return FAISS
103
 
104
  def _import_hf_hub():
105
- from huggingface_hub import HfApi, HfFolder
 
106
  return HfApi, HfFolder
107
 
108
  # ---------- SmartHeal prompts (system + user prefix) ----------
109
- SMARTHEAL_SYSTEM_PROMPT = """\
110
  You are SmartHeal Clinical Assistant, a wound-care decision-support system.
111
  You analyze wound photographs and brief patient context to produce careful,
112
  specific, guideline-informed recommendations WITHOUT diagnosing. You always:
@@ -119,7 +118,7 @@ specific, guideline-informed recommendations WITHOUT diagnosing. You always:
119
  - Safety: remind the user to seek clinician review for changes or red flags.
120
  """
121
 
122
- SMARTHEAL_USER_PREFIX = """\
123
  Patient: {patient_info}
124
  Visual findings: type={wound_type}, size={length_cm}x{breadth_cm} cm, area={area_cm2} cm^2,
125
  detection_conf={det_conf:.2f}, calibration={px_per_cm} px/cm.
@@ -139,6 +138,7 @@ Keep to 220–300 words. Do NOT provide diagnosis. Avoid contraindicated advice.
139
  """
140
 
141
  # ---------- VLM (MedGemma replaced with Qwen2-VL) ----------
 
142
  def _vlm_infer_gpu(messages, model_id: str, max_new_tokens: int, token: Optional[str]):
143
  """
144
  Runs entirely inside a Spaces GPU worker. It's the ONLY place we allow CUDA init.
@@ -149,7 +149,7 @@ def _vlm_infer_gpu(messages, model_id: str, max_new_tokens: int, token: Optional
149
  task="image-text-to-text",
150
  model=model_id,
151
  torch_dtype=torch.bfloat16, # Use torch_dtype from the working example
152
- device_map=0, # CUDA init happens here, safely in GPU worker
153
  token=token,
154
  trust_remote_code=True,
155
  model_kwargs={"low_cpu_mem_usage": True},
@@ -161,7 +161,6 @@ def _vlm_infer_gpu(messages, model_id: str, max_new_tokens: int, token: Optional
161
  txt = out[0].get("generated_text", "")
162
  return (txt or "").strip() or "⚠️ Empty response"
163
 
164
- @_SPACES_GPU(enable_queue=True)
165
  def generate_medgemma_report( # kept name so callers don't change
166
  patient_info: str,
167
  visual_results: Dict,
@@ -213,9 +212,8 @@ def load_yolo_model():
213
  model = YOLO(YOLO_MODEL_PATH)
214
  return model
215
  def load_segmentation_model():
216
- import tensorflow as tf
217
  load_model = _import_tf_loader()
218
- return load_model(SEG_MODEL_PATH, compile=False, custom_objects={'InputLayer': tf.keras.layers.InputLayer})
219
 
220
  def load_classification_pipeline():
221
  pipe = _import_hf_cls()
@@ -366,12 +364,7 @@ def _imagenet_norm(arr: np.ndarray) -> np.ndarray:
366
  def _preprocess_for_seg(bgr_roi: np.ndarray, target_hw: Tuple[int, int]) -> np.ndarray:
367
  H, W = target_hw
368
  resized = cv2.resize(bgr_roi, (W, H), interpolation=cv2.INTER_LINEAR)
369
- if SEG_EXPECTS_RGB:
370
- resized = cv2.cvtColor(resized, cv2.COLOR_BGR2RGB)
371
- if SEG_NORM.lower() == "imagenet":
372
- x = _imagenet_norm(resized)
373
- else:
374
- x = resized.astype(np.float32) / 255.0
375
  x = np.expand_dims(x, axis=0) # (1,H,W,3)
376
  return x
377
 
@@ -410,7 +403,9 @@ def _adaptive_prob_threshold(p: np.ndarray) -> float:
410
  return thr_otsu if score(af_otsu) <= score(af_pctl) else thr_pctl
411
 
412
  def _grabcut_refine(bgr: np.ndarray, seed01: np.ndarray, iters: int = 3) -> np.ndarray:
413
- """Grow from a confident core into low-contrast margins."""
 
 
414
  h, w = bgr.shape[:2]
415
  gc = np.full((h, w), cv2.GC_PR_BGD, np.uint8)
416
  k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
@@ -423,571 +418,127 @@ def _grabcut_refine(bgr: np.ndarray, seed01: np.ndarray, iters: int = 3) -> np.n
423
  cv2.grabCut(bgr, gc, None, bgdModel, fgdModel, iters, cv2.GC_INIT_WITH_MASK)
424
  return np.where((gc == cv2.GC_FGD) | (gc == cv2.GC_PR_FGD), 1, 0).astype(np.uint8)
425
 
426
- def _fill_holes(mask01: np.ndarray) -> np.ndarray:
427
- h, w = mask01.shape[:2]
428
- ff = np.zeros((h + 2, w + 2), np.uint8)
429
- m = (mask01 * 255).astype(np.uint8).copy()
430
- cv2.floodFill(m, ff, (0, 0), 255)
431
- m_inv = cv2.bitwise_not(m)
432
- out = ((mask01 * 255) | m_inv) // 255
433
- return out.astype(np.uint8)
434
-
435
- def _clean_mask(mask01: np.ndarray) -> np.ndarray:
436
- """Open → Close → Fill holes → Largest component (no dilation)."""
437
- mask01 = (mask01 > 0).astype(np.uint8)
438
- k3 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
439
- k5 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
440
- mask01 = cv2.morphologyEx(mask01, cv2.MORPH_OPEN, k3, iterations=1)
441
- mask01 = cv2.morphologyEx(mask01, cv2.MORPH_CLOSE, k5, iterations=1)
442
- mask01 = _fill_holes(mask01)
443
- # Keep largest component only
444
- num, labels, stats, _ = cv2.connectedComponentsWithStats(mask01, 8)
445
- if num > 1:
446
- areas = stats[1:, cv2.CC_STAT_AREA]
447
- if areas.size:
448
- largest_idx = 1 + int(np.argmax(areas))
449
- mask01 = (labels == largest_idx).astype(np.uint8)
450
- return (mask01 > 0).astype(np.uint8)
451
-
452
- # Global last debug dict (per-process)
453
- _last_seg_debug: Dict[str, object] = {}
454
-
455
- def segment_wound(image_bgr: np.ndarray, ts: str, out_dir: str) -> Tuple[np.ndarray, Dict[str, object]]:
456
- """
457
- TF model → adaptive threshold on prob → GrabCut grow → cleanup.
458
- Fallback: KMeans-Lab.
459
- Returns (mask_uint8_0_255, debug_dict)
460
- """
461
- debug = {"used": None, "reason": None, "positive_fraction": 0.0,
462
- "thr": None, "heatmap_path": None, "roi_seen_by_model": None}
463
-
464
- seg_model = models_cache.get("seg", None)
465
-
466
- # --- Model path ---
467
- if seg_model is not None:
468
- try:
469
- ishape = getattr(seg_model, "input_shape", None)
470
- if not ishape or len(ishape) < 4:
471
- raise ValueError(f"Bad seg input_shape: {ishape}")
472
- th, tw = int(ishape[1]), int(ishape[2])
473
-
474
- x = _preprocess_for_seg(image_bgr, (th, tw))
475
- roi_seen_path = None
476
- if SMARTHEAL_DEBUG:
477
- roi_seen_path = os.path.join(out_dir, f"roi_for_seg_{ts}.png")
478
- cv2.imwrite(roi_seen_path, image_bgr)
479
-
480
- pred = seg_model.predict(x, verbose=0)
481
- if isinstance(pred, (list, tuple)): pred = pred[0]
482
- p = _to_prob(pred)
483
- p = cv2.resize(p, (image_bgr.shape[1], image_bgr.shape[0]), interpolation=cv2.INTER_LINEAR)
484
-
485
- heatmap_path = None
486
- if SMARTHEAL_DEBUG:
487
- hm = (np.clip(p, 0, 1) * 255).astype(np.uint8)
488
- heat = cv2.applyColorMap(hm, cv2.COLORMAP_JET)
489
- heatmap_path = os.path.join(out_dir, f"seg_pred_heatmap_{ts}.png")
490
- cv2.imwrite(heatmap_path, heat)
491
-
492
- thr = _adaptive_prob_threshold(p)
493
- core01 = (p >= thr).astype(np.uint8)
494
- core_frac = float(core01.sum()) / float(core01.size)
495
-
496
- if core_frac < 0.005:
497
- thr2 = max(thr - 0.10, 0.15)
498
- core01 = (p >= thr2).astype(np.uint8)
499
- thr = thr2
500
- core_frac = float(core01.sum()) / float(core01.size)
501
-
502
- if core01.any():
503
- gc01 = _grabcut_refine(image_bgr, core01, iters=3)
504
- mask01 = _clean_mask(gc01)
505
- else:
506
- mask01 = np.zeros(core01.shape, np.uint8)
507
-
508
- pos_frac = float(mask01.sum()) / float(mask01.size)
509
- logging.info(f"SegModel USED | thr={float(thr):.2f} core_frac={core_frac:.4f} final_frac={pos_frac:.4f}")
510
-
511
- debug.update({
512
- "used": "tf_model",
513
- "reason": "ok",
514
- "positive_fraction": pos_frac,
515
- "thr": float(thr),
516
- "heatmap_path": heatmap_path,
517
- "roi_seen_by_model": roi_seen_path
518
- })
519
- return (mask01 * 255).astype(np.uint8), debug
520
-
521
- except Exception as e:
522
- logging.warning(f"⚠️ Segmentation model failed → fallback. Reason: {e}")
523
- debug.update({"used": "fallback_kmeans", "reason": f"model_failed: {e}"})
524
-
525
- # --- Fallback: KMeans in Lab (reddest cluster as wound) ---
526
- Z = image_bgr.reshape((-1, 3)).astype(np.float32)
527
- criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
528
- _, labels, centers = cv2.kmeans(Z, 2, None, criteria, 5, cv2.KMEANS_PP_CENTERS)
529
- centers_u8 = centers.astype(np.uint8).reshape(1, 2, 3)
530
- centers_lab = cv2.cvtColor(centers_u8, cv2.COLOR_BGR2LAB)[0]
531
- wound_idx = int(np.argmax(centers_lab[:, 1])) # maximize a* (red)
532
- mask01 = (labels.reshape(image_bgr.shape[:2]) == wound_idx).astype(np.uint8)
533
- mask01 = _clean_mask(mask01)
534
-
535
- pos_frac = float(mask01.sum()) / float(mask01.size)
536
- logging.info(f"KMeans USED | final_frac={pos_frac:.4f}")
537
-
538
- debug.update({
539
- "used": "fallback_kmeans",
540
- "reason": debug.get("reason") or "no_model",
541
- "positive_fraction": pos_frac,
542
- "thr": None
543
- })
544
- return (mask01 * 255).astype(np.uint8), debug
545
-
546
- # ---------- Measurement + overlay helpers ----------
547
- def largest_component_mask(binary01: np.ndarray, min_area_px: int = 50) -> np.ndarray:
548
- num, labels, stats, _ = cv2.connectedComponentsWithStats(binary01.astype(np.uint8), connectivity=8)
549
- if num <= 1:
550
- return binary01.astype(np.uint8)
551
- areas = stats[1:, cv2.CC_STAT_AREA]
552
- if areas.size == 0 or areas.max() < min_area_px:
553
- return binary01.astype(np.uint8)
554
- largest_idx = 1 + int(np.argmax(areas))
555
- return (labels == largest_idx).astype(np.uint8)
556
-
557
- def measure_min_area_rect(mask01: np.ndarray, px_per_cm: float) -> Tuple[float, float, Tuple]:
558
- contours, _ = cv2.findContours(mask01.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
559
- if not contours:
560
- return 0.0, 0.0, (None, None)
561
- cnt = max(contours, key=cv2.contourArea)
562
- rect = cv2.minAreaRect(cnt)
563
- (w_px, h_px) = rect[1]
564
- length_px, breadth_px = (max(w_px, h_px), min(w_px, h_px))
565
- length_cm = round(length_px / max(px_per_cm, 1e-6), 2)
566
- breadth_cm = round(breadth_px / max(px_per_cm, 1e-6), 2)
567
- box = cv2.boxPoints(rect).astype(int)
568
- return length_cm, breadth_cm, (box, rect[0])
569
-
570
- def area_cm2_from_contour(mask01: np.ndarray, px_per_cm: float) -> Tuple[float, Optional[np.ndarray]]:
571
- """Area from largest polygon (sub-pixel); returns (area_cm2, contour)."""
572
- m = (mask01 > 0).astype(np.uint8)
573
- contours, _ = cv2.findContours(m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
574
- if not contours:
575
- return 0.0, None
576
- cnt = max(contours, key=cv2.contourArea)
577
- poly_area_px2 = float(cv2.contourArea(cnt))
578
- area_cm2 = round(poly_area_px2 / (max(px_per_cm, 1e-6) ** 2), 2)
579
- return area_cm2, cnt
580
-
581
- def clamp_area_with_minrect(cnt: np.ndarray, px_per_cm: float, area_cm2_poly: float) -> float:
582
- rect = cv2.minAreaRect(cnt)
583
- (w_px, h_px) = rect[1]
584
- rect_area_px2 = float(max(w_px, 0.0) * max(h_px, 0.0))
585
- rect_area_cm2 = rect_area_px2 / (max(px_per_cm, 1e-6) ** 2)
586
- return round(min(area_cm2_poly, rect_area_cm2 * 1.05), 2)
587
-
588
- def draw_measurement_overlay(
589
- base_bgr: np.ndarray,
590
- mask01: np.ndarray,
591
- rect_box: np.ndarray,
592
- length_cm: float,
593
- breadth_cm: float,
594
- thickness: int = 2
595
- ) -> np.ndarray:
596
- """
597
- 1) Strong red mask overlay + white contour
598
- 2) Min-area rectangle
599
- 3) Double-headed arrows labeled Length/Width
600
- """
601
- overlay = base_bgr.copy()
602
-
603
- # Mask tint
604
- mask255 = (mask01 * 255).astype(np.uint8)
605
- mask3 = cv2.merge([mask255, mask255, mask255])
606
- red = np.zeros_like(overlay); red[:] = (0, 0, 255)
607
- alpha = 0.55
608
- tinted = cv2.addWeighted(overlay, 1 - alpha, red, alpha, 0)
609
- overlay = np.where(mask3 > 0, tinted, overlay)
610
-
611
- # Contour
612
- cnts, _ = cv2.findContours(mask255, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
613
- if cnts:
614
- cv2.drawContours(overlay, cnts, -1, (255, 255, 255), 2)
615
-
616
- if rect_box is not None:
617
- cv2.polylines(overlay, [rect_box], True, (255, 255, 255), thickness)
618
- pts = rect_box.reshape(-1, 2)
619
-
620
- def midpoint(a, b): return (int((a[0] + b[0]) / 2), int((a[1] + b[1]) / 2))
621
- e = [np.linalg.norm(pts[i] - pts[(i + 1) % 4]) for i in range(4)]
622
- long_edge_idx = int(np.argmax(e))
623
- mids = [midpoint(pts[i], pts[(i + 1) % 4]) for i in range(4)]
624
- long_pair = (long_edge_idx, (long_edge_idx + 2) % 4)
625
- short_pair = ((long_edge_idx + 1) % 4, (long_edge_idx + 3) % 4)
626
-
627
- def draw_double_arrow(img, p1, p2):
628
- cv2.arrowedLine(img, p1, p2, (0, 0, 0), thickness + 2, tipLength=0.05)
629
- cv2.arrowedLine(img, p2, p1, (0, 0, 0), thickness + 2, tipLength=0.05)
630
- cv2.arrowedLine(img, p1, p2, (255, 255, 255), thickness, tipLength=0.05)
631
- cv2.arrowedLine(img, p2, p1, (255, 255, 255), thickness, tipLength=0.05)
632
-
633
- def put_label(text, anchor):
634
- org = (anchor[0] + 6, anchor[1] - 6)
635
- cv2.putText(overlay, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 4, cv2.LINE_AA)
636
- cv2.putText(overlay, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
637
-
638
- draw_double_arrow(overlay, mids[long_pair[0]], mids[long_pair[1]])
639
- draw_double_arrow(overlay, mids[short_pair[0]], mids[short_pair[1]])
640
- put_label(f"Length: {length_cm:.2f} cm", mids[long_pair[0]])
641
- put_label(f"Width: {breadth_cm:.2f} cm", mids[short_pair[0]])
642
-
643
- return overlay
644
-
645
- # ---------- AI PROCESSOR ----------
646
  class AIProcessor:
647
  def __init__(self):
 
 
 
 
 
 
 
 
648
  self.models_cache = models_cache
649
  self.knowledge_base_cache = knowledge_base_cache
650
- self.uploads_dir = UPLOADS_DIR
651
- self.dataset_id = DATASET_ID
652
- self.hf_token = HF_TOKEN
653
-
654
- def _ensure_analysis_dir(self) -> str:
655
- out_dir = os.path.join(self.uploads_dir, "analysis")
656
- os.makedirs(out_dir, exist_ok=True)
657
- return out_dir
658
-
659
- def perform_visual_analysis(self, image_pil: Image.Image) -> Dict:
660
- """
661
- YOLO detect → crop ROI → segment_wound(ROI) → clean mask →
662
- minAreaRect measurement (cm) using EXIF px/cm → save outputs.
663
- """
664
- try:
665
- px_per_cm, exif_meta = estimate_px_per_cm_from_exif(image_pil, DEFAULT_PX_PER_CM)
666
- # Guardrails for calibration to avoid huge area blow-ups
667
- px_per_cm = float(np.clip(px_per_cm, 20.0, 350.0))
668
- if (exif_meta or {}).get("used") != "exif":
669
- logging.warning(f"Calibration fallback used: px_per_cm={px_per_cm:.2f} (default). Prefer ruler/Aruco for accuracy.")
670
-
671
- image_cv = cv2.cvtColor(np.array(image_pil.convert("RGB")), cv2.COLOR_RGB2BGR)
672
-
673
- # --- Detection ---
674
- det_model = self.models_cache.get("det")
675
- if det_model is None:
676
- raise RuntimeError("YOLO model not loaded")
677
- # Force CPU inference and avoid CUDA touch
678
- results = det_model.predict(image_cv, verbose=False, device="cpu")
679
- if (not results) or (not getattr(results[0], "boxes", None)) or (len(results[0].boxes) == 0):
680
- try:
681
- import gradio as gr
682
- raise gr.Error("No wound could be detected.")
683
- except Exception:
684
- raise RuntimeError("No wound could be detected.")
685
-
686
- box = results[0].boxes[0].xyxy[0].cpu().numpy().astype(int)
687
- x1, y1, x2, y2 = [int(v) for v in box]
688
- x1, y1 = max(0, x1), max(0, y1)
689
- x2, y2 = min(image_cv.shape[1], x2), min(image_cv.shape[0], y2)
690
- roi = image_cv[y1:y2, x1:x2].copy()
691
- if roi.size == 0:
692
- try:
693
- import gradio as gr
694
- raise gr.Error("Detected ROI is empty.")
695
- except Exception:
696
- raise RuntimeError("Detected ROI is empty.")
697
-
698
- out_dir = self._ensure_analysis_dir()
699
- ts = datetime.now().strftime("%Y%m%d_%H%M%S")
700
-
701
- # --- Segmentation (model-first + KMeans fallback) ---
702
- mask_u8_255, seg_debug = segment_wound(roi, ts, out_dir)
703
- mask01 = (mask_u8_255 > 127).astype(np.uint8)
704
-
705
- if mask01.any():
706
- mask01 = _clean_mask(mask01)
707
- logging.debug(f"Mask postproc: px_after={int(mask01.sum())}")
708
-
709
- # --- Measurement (accurate & conservative) ---
710
- if mask01.any():
711
- length_cm, breadth_cm, (box_pts, _) = measure_min_area_rect(mask01, px_per_cm)
712
- area_poly_cm2, largest_cnt = area_cm2_from_contour(mask01, px_per_cm)
713
- if largest_cnt is not None:
714
- surface_area_cm2 = clamp_area_with_minrect(largest_cnt, px_per_cm, area_poly_cm2)
715
- else:
716
- surface_area_cm2 = area_poly_cm2
717
-
718
- anno_roi = draw_measurement_overlay(roi, mask01, box_pts, length_cm, breadth_cm)
719
- segmentation_empty = False
720
- else:
721
- # Fallback if seg failed: use ROI dimensions
722
- h_px = max(0, y2 - y1); w_px = max(0, x2 - x1)
723
- length_cm = round(max(h_px, w_px) / px_per_cm, 2)
724
- breadth_cm = round(min(h_px, w_px) / px_per_cm, 2)
725
- surface_area_cm2 = round((h_px * w_px) / (px_per_cm ** 2), 2)
726
- anno_roi = roi.copy()
727
- cv2.rectangle(anno_roi, (2, 2), (anno_roi.shape[1]-3, anno_roi.shape[0]-3), (0, 0, 255), 3)
728
- cv2.line(anno_roi, (0, 0), (anno_roi.shape[1]-1, anno_roi.shape[0]-1), (0, 0, 255), 2)
729
- cv2.line(anno_roi, (anno_roi.shape[1]-1, 0), (0, anno_roi.shape[0]-1), (0, 0, 255), 2)
730
- box_pts = None
731
- segmentation_empty = True
732
-
733
- # --- Save visualizations ---
734
- original_path = os.path.join(out_dir, f"original_{ts}.png")
735
- cv2.imwrite(original_path, image_cv)
736
-
737
- det_vis = image_cv.copy()
738
- cv2.rectangle(det_vis, (x1, y1), (x2, y2), (0, 255, 0), 2)
739
- detection_path = os.path.join(out_dir, f"detection_{ts}.png")
740
- cv2.imwrite(detection_path, det_vis)
741
-
742
- roi_mask_path = os.path.join(out_dir, f"roi_mask_{ts}.png")
743
- cv2.imwrite(roi_mask_path, (mask01 * 255).astype(np.uint8))
744
-
745
- # ROI overlay (mask tint + contour, without arrows)
746
- mask255 = (mask01 * 255).astype(np.uint8)
747
- mask3 = cv2.merge([mask255, mask255, mask255])
748
- red = np.zeros_like(roi); red[:] = (0, 0, 255)
749
- alpha = 0.55
750
- tinted = cv2.addWeighted(roi, 1 - alpha, red, alpha, 0)
751
- if mask255.any():
752
- roi_overlay = np.where(mask3 > 0, tinted, roi)
753
- cnts, _ = cv2.findContours(mask255, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
754
- cv2.drawContours(roi_overlay, cnts, -1, (255, 255, 255), 2)
755
- else:
756
- roi_overlay = anno_roi
757
-
758
- seg_full = image_cv.copy()
759
- seg_full[y1:y2, x1:x2] = roi_overlay
760
- segmentation_path = os.path.join(out_dir, f"segmentation_{ts}.png")
761
- cv2.imwrite(segmentation_path, seg_full)
762
-
763
- segmentation_roi_path = os.path.join(out_dir, f"segmentation_roi_{ts}.png")
764
- cv2.imwrite(segmentation_roi_path, roi_overlay)
765
-
766
- # Annotated (mask + arrows + labels) in full-frame
767
- anno_full = image_cv.copy()
768
- anno_full[y1:y2, x1:x2] = anno_roi
769
- annotated_seg_path = os.path.join(out_dir, f"segmentation_annotated_{ts}.png")
770
- cv2.imwrite(annotated_seg_path, anno_full)
771
-
772
- # --- Optional classification ---
773
- wound_type = "Unknown"
774
- cls_pipe = self.models_cache.get("cls")
775
- if cls_pipe is not None:
776
- try:
777
- preds = cls_pipe(Image.fromarray(cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)))
778
- if preds:
779
- wound_type = max(preds, key=lambda x: x.get("score", 0)).get("label", "Unknown")
780
- except Exception as e:
781
- logging.warning(f"Classification failed: {e}")
782
-
783
- # Log end-of-seg summary
784
- seg_summary = {
785
- "seg_used": seg_debug.get("used"),
786
- "seg_reason": seg_debug.get("reason"),
787
- "positive_fraction": round(float(seg_debug.get("positive_fraction", 0.0)), 6),
788
- "threshold": seg_debug.get("thr"),
789
- "segmentation_empty": segmentation_empty,
790
- "exif_px_per_cm": round(px_per_cm, 3),
791
- }
792
- _log_kv("SEG_SUMMARY", seg_summary)
793
-
794
- return {
795
- "wound_type": wound_type,
796
- "length_cm": length_cm,
797
- "breadth_cm": breadth_cm,
798
- "surface_area_cm2": surface_area_cm2,
799
- "px_per_cm": round(px_per_cm, 2),
800
- "calibration_meta": exif_meta,
801
- "detection_confidence": float(results[0].boxes.conf[0].cpu().item())
802
- if getattr(results[0].boxes, "conf", None) is not None else 0.0,
803
- "detection_image_path": detection_path,
804
- "segmentation_image_path": annotated_seg_path,
805
- "segmentation_annotated_path": annotated_seg_path,
806
- "segmentation_roi_path": segmentation_roi_path,
807
- "roi_mask_path": roi_mask_path,
808
- "segmentation_empty": segmentation_empty,
809
- "segmentation_debug": seg_debug,
810
- "original_image_path": original_path,
811
- }
812
- except Exception as e:
813
- logging.error(f"Visual analysis failed: {e}", exc_info=True)
814
- raise
815
 
816
- # ---------- Knowledge base + reporting ----------
817
  def query_guidelines(self, query: str) -> str:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
818
  try:
819
- vs = self.knowledge_base_cache.get("vector_store")
820
- if not vs:
821
- return "Knowledge base is not available."
822
- retriever = vs.as_retriever(search_kwargs={"k": 5})
823
- # Modern API (avoid get_relevant_documents deprecation)
824
- docs = retriever.invoke(query)
825
- lines: List[str] = []
826
- for d in docs:
827
- src = (d.metadata or {}).get("source", "N/A")
828
- txt = (d.page_content or "")[:300]
829
- lines.append(f"Source: {src}\nContent: {txt}...")
830
- return "\n\n".join(lines) if lines else "No relevant guideline snippets found."
831
- except Exception as e:
832
- logging.warning(f"Guidelines query failed: {e}")
833
- return f"Guidelines query failed: {str(e)}"
834
-
835
- def _generate_fallback_report(self, patient_info: str, visual_results: Dict, guideline_context: str) -> str:
836
- return f"""# 🩺 SmartHeal AI - Comprehensive Wound Analysis Report
837
-
838
- ## 📋 Patient Information
839
- {patient_info}
840
-
841
- ## 🔍 Visual Analysis Results
842
- - **Wound Type**: {visual_results.get('wound_type', 'Unknown')}
843
- - **Dimensions**: {visual_results.get('length_cm', 0)} cm × {visual_results.get('breadth_cm', 0)} cm
844
- - **Surface Area**: {visual_results.get('surface_area_cm2', 0)} cm²
845
- - **Detection Confidence**: {visual_results.get('detection_confidence', 0):.1%}
846
- - **Calibration**: {visual_results.get('px_per_cm','?')} px/cm ({(visual_results.get('calibration_meta') or {}).get('used','default')})
847
-
848
- ## 📊 Analysis Images
849
- - **Original**: {visual_results.get('original_image_path', 'N/A')}
850
- - **Detection**: {visual_results.get('detection_image_path', 'N/A')}
851
- - **Segmentation**: {visual_results.get('segmentation_image_path', 'N/A')}
852
- - **Annotated**: {visual_results.get('segmentation_annotated_path', 'N/A')}
853
-
854
- ## 🎯 Clinical Summary
855
- Automated analysis provides quantitative measurements; verify via clinical examination.
856
-
857
- ## 💊 Recommendations
858
- - Cleanse wound gently; select dressing per exudate/infection risk
859
- - Debride necrotic tissue if indicated (clinical decision)
860
- - Document with serial photos and measurements
861
-
862
- ## 📅 Monitoring
863
- - Daily in week 1, then every 2–3 days (or as indicated)
864
- - Weekly progress review
865
-
866
- ## 📚 Guideline Context
867
- {(guideline_context or '')[:800]}{"..." if guideline_context and len(guideline_context) > 800 else ''}
868
-
869
- **Disclaimer:** Automated, for decision support only. Verify clinically.
870
- """
871
-
872
- def generate_final_report(
873
- self,
874
- patient_info: str,
875
- visual_results: Dict,
876
- guideline_context: str,
877
- image_pil: Image.Image,
878
- max_new_tokens: Optional[int] = None,
879
- ) -> str:
880
- try:
881
- report = generate_medgemma_report(
882
- patient_info, visual_results, guideline_context, image_pil, max_new_tokens
883
- )
884
- if report and report.strip() and not report.startswith(("⚠️", "❌")):
885
- return report
886
- logging.warning("VLM unavailable/invalid; using fallback.")
887
- return self._generate_fallback_report(patient_info, visual_results, guideline_context)
888
- except Exception as e:
889
- logging.error(f"Report generation failed: {e}")
890
- return self._generate_fallback_report(patient_info, visual_results, guideline_context)
891
-
892
- def save_and_commit_image(self, image_pil: Image.Image) -> str:
893
- try:
894
- os.makedirs(self.uploads_dir, exist_ok=True)
895
- ts = datetime.now().strftime("%Y%m%d_%H%M%S")
896
- filename = f"{ts}.png"
897
- path = os.path.join(self.uploads_dir, filename)
898
- image_pil.convert("RGB").save(path)
899
- logging.info(f"✅ Image saved locally: {path}")
900
-
901
- if HF_TOKEN and DATASET_ID:
902
- try:
903
- HfApi, HfFolder = _import_hf_hub()
904
- HfFolder.save_token(HF_TOKEN)
905
- api = HfApi()
906
- api.upload_file(
907
- path_or_fileobj=path,
908
- path_in_repo=f"images/{filename}",
909
- repo_id=DATASET_ID,
910
- repo_type="dataset",
911
- token=HF_TOKEN,
912
- commit_message=f"Upload wound image: {filename}",
913
- )
914
- logging.info("✅ Image committed to HF dataset")
915
- except Exception as e:
916
- logging.warning(f"HF upload failed: {e}")
917
-
918
- return path
919
- except Exception as e:
920
- logging.error(f"Failed to save/commit image: {e}")
921
- return ""
922
-
923
-
924
- def full_analysis_pipeline(self, image_pil: Image.Image, questionnaire_data: Dict) -> Dict:
925
- try:
926
- saved_path = self.save_and_commit_image(image_pil)
927
- visual_results = self.perform_visual_analysis(image_pil)
928
-
929
- pi = questionnaire_data or {}
930
- patient_info = (
931
- f"Age: {pi.get('age','N/A')}, "
932
- f"Diabetic: {pi.get('diabetic','N/A')}, "
933
- f"Allergies: {pi.get('allergies','N/A')}, "
934
- f"Date of Wound: {pi.get('date_of_injury','N/A')}, "
935
- f"Professional Care: {pi.get('professional_care','N/A')}, "
936
- f"Oozing/Bleeding: {pi.get('oozing_bleeding','N/A')}, "
937
- f"Infection: {pi.get('infection','N/A')}, "
938
- f"Moisture: {pi.get('moisture','N/A')}"
939
- )
940
-
941
- query = (
942
- f"best practices for managing a {visual_results.get('wound_type','Unknown')} "
943
- f"with moisture '{pi.get('moisture','unknown')}' and infection '{pi.get('infection','unknown')}' "
944
- f"in a diabetic status '{pi.get('diabetic','unknown')}'"
945
- )
946
  guideline_context = self.query_guidelines(query)
947
 
948
- report = self.generate_final_report(patient_info, visual_results, guideline_context, image_pil)
949
-
950
- return {
951
- "success": True,
952
- "visual_analysis": visual_results,
953
- "report": report,
954
- "saved_image_path": saved_path,
955
- "guideline_context": (guideline_context or "")[:500] + (
956
- "..." if guideline_context and len(guideline_context) > 500 else ""
957
- ),
958
- }
959
- except Exception as e:
960
- logging.error(f"Pipeline error: {e}")
961
- return {
962
- "success": False,
963
- "error": str(e),
964
- "visual_analysis": {},
965
- "report": f"Analysis failed: {str(e)}",
966
- "saved_image_path": None,
967
- "guideline_context": "",
968
- }
969
-
970
- def analyze_wound(self, image, questionnaire_data: Dict) -> Dict:
971
- try:
972
- if isinstance(image, str):
973
- if not os.path.exists(image):
974
- raise ValueError(f"Image file not found: {image}")
975
- image_pil = Image.open(image)
976
- elif isinstance(image, Image.Image):
977
- image_pil = image
978
- elif isinstance(image, np.ndarray):
979
- image_pil = Image.fromarray(image)
980
- else:
981
- raise ValueError(f"Unsupported image type: {type(image)}")
982
 
983
- return self.full_analysis_pipeline(image_pil, questionnaire_data or {})
984
  except Exception as e:
985
- logging.error(f"Wound analysis error: {e}")
986
- return {
987
- "success": False,
988
- "error": str(e),
989
- "visual_analysis": {},
990
- "report": f"Analysis initialization failed: {str(e)}",
991
- "saved_image_path": None,
992
- "guideline_context": "",
993
- }
 
1
+ """
2
+ SmartHeal AI Processor - Zero GPU Compatible Version
3
+ Designed specifically for Hugging Face Spaces with Zero GPU architecture
4
+ """
5
 
6
  import os
7
  import logging
 
 
 
 
 
 
 
 
8
  import cv2
9
  import numpy as np
10
  from PIL import Image
11
+ import json
12
+ from datetime import datetime
13
+ from typing import Optional, Dict, List, Tuple, Any
14
+ from contextlib import contextmanager
15
 
16
+ # Configure logging
17
  logging.basicConfig(
18
+ level=logging.INFO,
19
+ format="%(asctime)s - %(levelname)s - %(message)s"
20
  )
21
 
22
+ # Environment setup for Zero GPU compatibility
23
+ os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
24
+ os.environ.setdefault("CUDA_VISIBLE_DEVICES", "-1") # Hide GPU from main process
25
+
26
+ # Import spaces decorator
27
+ try:
28
+ import spaces
29
+ _SPACES_GPU = spaces.GPU
30
+ except ImportError:
31
+ logging.warning("spaces package not available - running in CPU mode")
32
+ # Create dummy decorator for local testing
33
+ def _SPACES_GPU_dummy(*args, **kwargs):
34
+ def decorator(func):
35
+ return func
36
+ return decorator
37
+ _SPACES_GPU = _SPACES_GPU_dummy
38
 
39
+ @contextmanager
40
+ def _no_cuda_env():
41
+ """Context manager to prevent CUDA initialization in main process"""
42
+ prev_cuda = os.environ.get("CUDA_VISIBLE_DEVICES")
43
+ os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
44
+ try:
45
+ yield
46
+ finally:
47
+ if prev_cuda is None:
48
+ os.environ.pop("CUDA_VISIBLE_DEVICES", None)
49
+ else:
50
+ os.environ["CUDA_VISIBLE_DEVICES"] = prev_cuda
51
 
52
  # ---- Paths / constants ----
53
  UPLOADS_DIR = "uploads"
 
61
  DEFAULT_PX_PER_CM = 38.0
62
  PX_PER_CM_MIN, PX_PER_CM_MAX = 5.0, 1200.0
63
 
 
 
 
 
 
64
  models_cache: Dict[str, object] = {}
65
  knowledge_base_cache: Dict[str, object] = {}
66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
  # ---------- Lazy imports (wrapped where needed) ----------
68
  def _import_ultralytics():
69
  # Prevent Ultralytics from probing CUDA on import
 
72
  return YOLO
73
 
74
  def _import_tf_loader():
75
+ # Ensure TensorFlow does not try to use GPU in main process
76
+ with _no_cuda_env():
77
+ import tensorflow as tf
78
+ tf.config.set_visible_devices([], "GPU")
79
+ from tensorflow.keras.models import load_model
80
  return load_model
81
 
82
  def _import_hf_cls():
83
+ with _no_cuda_env():
84
+ from transformers import pipeline
85
  return pipeline
86
 
87
  def _import_embeddings():
88
+ with _no_cuda_env():
89
+ from langchain_community.embeddings import HuggingFaceEmbeddings
90
  return HuggingFaceEmbeddings
91
 
92
  def _import_langchain_pdf():
93
+ with _no_cuda_env():
94
+ from langchain_community.document_loaders import PyPDFLoader
95
  return PyPDFLoader
96
 
97
  def _import_langchain_faiss():
98
+ with _no_cuda_env():
99
+ from langchain_community.vectorstores import FAISS
100
  return FAISS
101
 
102
  def _import_hf_hub():
103
+ with _no_cuda_env():
104
+ from huggingface_hub import HfApi, HfFolder
105
  return HfApi, HfFolder
106
 
107
  # ---------- SmartHeal prompts (system + user prefix) ----------
108
+ SMARTHEAL_SYSTEM_PROMPT = """
109
  You are SmartHeal Clinical Assistant, a wound-care decision-support system.
110
  You analyze wound photographs and brief patient context to produce careful,
111
  specific, guideline-informed recommendations WITHOUT diagnosing. You always:
 
118
  - Safety: remind the user to seek clinician review for changes or red flags.
119
  """
120
 
121
+ SMARTHEAL_USER_PREFIX = """
122
  Patient: {patient_info}
123
  Visual findings: type={wound_type}, size={length_cm}x{breadth_cm} cm, area={area_cm2} cm^2,
124
  detection_conf={det_conf:.2f}, calibration={px_per_cm} px/cm.
 
138
  """
139
 
140
  # ---------- VLM (MedGemma replaced with Qwen2-VL) ----------
141
+ @_SPACES_GPU(enable_queue=True)
142
  def _vlm_infer_gpu(messages, model_id: str, max_new_tokens: int, token: Optional[str]):
143
  """
144
  Runs entirely inside a Spaces GPU worker. It's the ONLY place we allow CUDA init.
 
149
  task="image-text-to-text",
150
  model=model_id,
151
  torch_dtype=torch.bfloat16, # Use torch_dtype from the working example
152
+ device_map="auto", # CUDA init happens here, safely in GPU worker
153
  token=token,
154
  trust_remote_code=True,
155
  model_kwargs={"low_cpu_mem_usage": True},
 
161
  txt = out[0].get("generated_text", "")
162
  return (txt or "").strip() or "⚠️ Empty response"
163
 
 
164
  def generate_medgemma_report( # kept name so callers don't change
165
  patient_info: str,
166
  visual_results: Dict,
 
212
  model = YOLO(YOLO_MODEL_PATH)
213
  return model
214
  def load_segmentation_model():
 
215
  load_model = _import_tf_loader()
216
+ return load_model(SEG_MODEL_PATH, compile=False, custom_objects={'InputLayer': _import_tf_loader().layers.InputLayer})
217
 
218
  def load_classification_pipeline():
219
  pipe = _import_hf_cls()
 
364
  def _preprocess_for_seg(bgr_roi: np.ndarray, target_hw: Tuple[int, int]) -> np.ndarray:
365
  H, W = target_hw
366
  resized = cv2.resize(bgr_roi, (W, H), interpolation=cv2.INTER_LINEAR)
367
+ x = resized.astype(np.float32) / 255.0
 
 
 
 
 
368
  x = np.expand_dims(x, axis=0) # (1,H,W,3)
369
  return x
370
 
 
403
  return thr_otsu if score(af_otsu) <= score(af_pctl) else thr_pctl
404
 
405
  def _grabcut_refine(bgr: np.ndarray, seed01: np.ndarray, iters: int = 3) -> np.ndarray:
406
+ """
407
+ Grow from a confident core into low-contrast margins.
408
+ """
409
  h, w = bgr.shape[:2]
410
  gc = np.full((h, w), cv2.GC_PR_BGD, np.uint8)
411
  k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
 
418
  cv2.grabCut(bgr, gc, None, bgdModel, fgdModel, iters, cv2.GC_INIT_WITH_MASK)
419
  return np.where((gc == cv2.GC_FGD) | (gc == cv2.GC_PR_FGD), 1, 0).astype(np.uint8)
420
 
421
+ # ---------- Main AIProcessor Class ----------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422
  class AIProcessor:
423
  def __init__(self):
424
+ self.config = type("Config", (object,), {
425
+ "HF_TOKEN": HF_TOKEN,
426
+ "YOLO_MODEL_PATH": YOLO_MODEL_PATH,
427
+ "SEG_MODEL_PATH": SEG_MODEL_PATH,
428
+ "DATASET_ID": DATASET_ID,
429
+ "UPLOADS_DIR": UPLOADS_DIR,
430
+ "GUIDELINE_PDFS": GUIDELINE_PDFS
431
+ })()
432
  self.models_cache = models_cache
433
  self.knowledge_base_cache = knowledge_base_cache
434
+ self.px_per_cm = DEFAULT_PX_PER_CM # Use default from constants
435
+
436
+ # Ensure CPU models and KB are initialized
437
+ initialize_cpu_models()
438
+ setup_knowledge_base()
439
+
440
+ def perform_visual_analysis(self, image_pil: Image.Image) -> Dict[str, Any]:
441
+ image_cv = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
442
+
443
+ if "det" not in self.models_cache or not self.models_cache["det"]:
444
+ raise ValueError("YOLO model not initialized.")
445
+
446
+ results = self.models_cache["det"].predict(image_cv, verbose=False, device="cpu")
447
+ if not results or not results[0].boxes:
448
+ raise ValueError("No wound detected.")
449
+
450
+ box = results[0].boxes[0].xyxy[0].cpu().numpy().astype(int)
451
+ region_cv = image_cv[box[1]:box[3], box[0]:box[2]]
452
+ detection_confidence = float(results[0].boxes[0].conf[0].cpu().numpy())
453
+
454
+ length = breadth = area = 0
455
+ if "seg" in self.models_cache and self.models_cache["seg"]:
456
+ try:
457
+ seg_model = self.models_cache["seg"]
458
+ input_size = seg_model.input_shape[1:3]
459
+ preprocessed_roi = _preprocess_for_seg(region_cv, input_size)
460
+ mask_pred = seg_model.predict(preprocessed_roi, verbose=0)[0]
461
+ prob_mask = _to_prob(mask_pred)
462
+
463
+ # Adaptive thresholding and GrabCut refinement
464
+ initial_mask = (prob_mask >= _adaptive_prob_threshold(prob_mask)).astype(np.uint8)
465
+ refined_mask = _grabcut_refine(region_cv, initial_mask)
466
+
467
+ contours, _ = cv2.findContours(refined_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
468
+ if contours:
469
+ cnt = max(contours, key=cv2.contourArea)
470
+ x, y, w, h = cv2.boundingRect(cnt)
471
+ length = round(h / self.px_per_cm, 2)
472
+ breadth = round(w / self.px_per_cm, 2)
473
+ area = round(cv2.contourArea(cnt) / (self.px_per_cm ** 2), 2)
474
+ except Exception as e:
475
+ logging.warning(f"Segmentation process failed: {e}")
476
+
477
+ wound_type = "Unknown"
478
+ if "cls" in self.models_cache and self.models_cache["cls"]:
479
+ try:
480
+ wound_region_pil = Image.fromarray(cv2.cvtColor(region_cv, cv2.COLOR_BGR2RGB))
481
+ classification_results = self.models_cache["cls"](wound_region_pil)
482
+ wound_type = max(classification_results, key=lambda x: x["score"])["label"]
483
+ except Exception as e:
484
+ logging.warning(f"Classification process failed: {e}")
485
+
486
+ return {
487
+ "wound_type": wound_type,
488
+ "length_cm": length,
489
+ "breadth_cm": breadth,
490
+ "surface_area_cm2": area,
491
+ "detection_confidence": detection_confidence,
492
+ "px_per_cm": self.px_per_cm
493
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494
 
 
495
  def query_guidelines(self, query: str) -> str:
496
+ vector_store = self.knowledge_base_cache.get("vector_store")
497
+ if not vector_store:
498
+ return "Knowledge base unavailable."
499
+
500
+ retriever = vector_store.as_retriever(search_kwargs={"k": 10})
501
+ docs = retriever.invoke(query)
502
+ return "\n\n".join([
503
+ f"Source: {doc.metadata.get('source', 'N/A')}, Page: {doc.metadata.get('page', 'N/A')}\nContent: {doc.page_content}"
504
+ for doc in docs
505
+ ])
506
+
507
+ def generate_final_report(self, patient_info, visual_results, guideline_context, image_pil, max_new_tokens=2048):
508
+ return generate_medgemma_report(patient_info, visual_results, guideline_context, image_pil, max_new_tokens)
509
+
510
+ def save_and_commit_image(self, image_pil):
511
+ filename = f"{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.png"
512
+ local_path = os.path.join(self.config.UPLOADS_DIR, filename)
513
+ image_pil.convert("RGB").save(local_path)
514
+ logging.info(f"Image saved locally: {local_path}")
515
+
516
+ if self.config.HF_TOKEN and self.config.DATASET_ID:
517
+ try:
518
+ api = _import_hf_hub()[0]() # HfApi
519
+ api.upload_file(
520
+ path_or_fileobj=local_path,
521
+ path_in_repo=f"images/{filename}",
522
+ repo_id=self.config.DATASET_ID,
523
+ repo_type="dataset",
524
+ commit_message=f"Upload wound image: {filename}",
525
+ token=self.config.HF_TOKEN
526
+ )
527
+ logging.info("✅ Image uploaded to HF dataset.")
528
+ except Exception as e:
529
+ logging.warning(f"Upload failed: {e}")
530
+
531
+ @_SPACES_GPU(enable_queue=True, duration=120)
532
+ def full_analysis_pipeline(self, image, questionnaire_data):
533
  try:
534
+ self.save_and_commit_image(image)
535
+ visual = self.perform_visual_analysis(image)
536
+ patient_info = ", ".join([f"{k}: {v}" for k, v in questionnaire_data.items()])
537
+ query = f"best practices for managing a {visual['wound_type']} with moisture level '{questionnaire_data.get('moisture')}' and signs of infection '{questionnaire_data.get('infection')}' in a patient who is diabetic '{questionnaire_data.get('diabetic')}'"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
538
  guideline_context = self.query_guidelines(query)
539
 
540
+ return self.generate_final_report(patient_info, visual, guideline_context, image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
541
 
 
542
  except Exception as e:
543
+ logging.error(f"Pipeline error: {e}", exc_info=True)
544
+ return f"❌ Error: {e}"