Spaces:
Sleeping
Sleeping
Update src/ai_processor.py
Browse files- src/ai_processor.py +170 -405
src/ai_processor.py
CHANGED
|
@@ -7,6 +7,7 @@ from datetime import datetime
|
|
| 7 |
import gradio as gr
|
| 8 |
import spaces
|
| 9 |
import torch
|
|
|
|
| 10 |
|
| 11 |
from huggingface_hub import HfApi, HfFolder
|
| 12 |
from langchain_community.document_loaders import PyPDFLoader
|
|
@@ -28,7 +29,7 @@ YOLO_MODEL_PATH = "src/best.pt"
|
|
| 28 |
SEG_MODEL_PATH = "src/segmentation_model.h5"
|
| 29 |
GUIDELINE_PDFS = ["src/eHealth in Wound Care.pdf", "src/IWGDF Guideline.pdf", "src/evaluation.pdf"]
|
| 30 |
DATASET_ID = "SmartHeal/wound-image-uploads"
|
| 31 |
-
MAX_NEW_TOKENS =
|
| 32 |
PIXELS_PER_CM = 38
|
| 33 |
|
| 34 |
# =============== GLOBAL CACHES ===============
|
|
@@ -131,115 +132,86 @@ def setup_knowledge_base():
|
|
| 131 |
initialize_cpu_models()
|
| 132 |
setup_knowledge_base()
|
| 133 |
|
| 134 |
-
# =============== GPU-DECORATED MEDGEMMA FUNCTION ===============
|
| 135 |
-
@spaces.GPU(enable_queue=True, duration=
|
| 136 |
-
def
|
| 137 |
patient_info,
|
| 138 |
visual_results,
|
| 139 |
guideline_context,
|
| 140 |
image_pil,
|
| 141 |
max_new_tokens=None,
|
| 142 |
):
|
| 143 |
-
"""GPU-only function for MedGemma report generation
|
|
|
|
| 144 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
try:
|
| 149 |
-
generate_medgemma_report._pipe = pipeline(
|
| 150 |
-
"image-text-to-text",
|
| 151 |
-
model="google/medgemma-4b-it",
|
| 152 |
-
torch_dtype=torch.bfloat16,
|
| 153 |
-
device_map="auto",
|
| 154 |
-
token=HF_TOKEN
|
| 155 |
-
)
|
| 156 |
-
logging.info("✅ MedGemma pipeline loaded on GPU")
|
| 157 |
-
except Exception as e:
|
| 158 |
-
logging.warning(f"MedGemma pipeline load failed: {e}")
|
| 159 |
-
return None
|
| 160 |
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
-
|
| 164 |
-
prompt = f"""
|
| 165 |
-
🩺 You are SmartHeal-AI Agent, a world-class wound care AI specialist trained in clinical wound assessment and guideline-based treatment planning.
|
| 166 |
-
Your task is to process the following structured inputs (patient data, wound measurements, clinical guidelines, and image) and perform **clinical reasoning and decision-making** to generate a complete wound care report.
|
| 167 |
-
---
|
| 168 |
-
🔍 **YOUR PROCESS — FOLLOW STRICTLY:**
|
| 169 |
-
### Step 1: Clinical Reasoning (Chain-of-Thought)
|
| 170 |
-
Use the provided information to think step-by-step about:
|
| 171 |
-
- Patient's risk factors (e.g. diabetes, age, healing limitations)
|
| 172 |
-
- Wound characteristics (size, tissue appearance, moisture, infection signs)
|
| 173 |
-
- Visual clues from the image (location, granulation, maceration, inflammation, surrounding skin)
|
| 174 |
-
- Clinical guidelines provided — selectively choose the ones most relevant to this case
|
| 175 |
-
Do NOT list all guidelines verbatim. Use judgment: apply them where relevant. Explain why or why not.
|
| 176 |
-
Also assess whether this wound appears:
|
| 177 |
-
- Acute vs chronic
|
| 178 |
-
- Surgical vs traumatic
|
| 179 |
-
- Inflammatory vs proliferative healing phase
|
| 180 |
-
---
|
| 181 |
-
### Step 2: Structured Clinical Report
|
| 182 |
-
Generate the following report sections using markdown and medical terminology:
|
| 183 |
-
#### **1. Clinical Summary**
|
| 184 |
-
- Describe wound appearance and tissue types (e.g., slough, necrotic, granulating, epithelializing)
|
| 185 |
-
- Include size, wound bed condition, peri-wound skin, and signs of infection or biofilm
|
| 186 |
-
- Mention inferred location (e.g., heel, forefoot) if image allows
|
| 187 |
-
- Summarize patient's systemic risk profile
|
| 188 |
-
#### **2. Medicinal & Dressing Recommendations**
|
| 189 |
-
Based on your analysis:
|
| 190 |
-
- Recommend specific **wound care dressings** (e.g., hydrocolloid, alginate, foam, antimicrobial silver, etc.) suitable to wound moisture level and infection risk
|
| 191 |
-
- Propose **topical or systemic agents** ONLY if relevant — include name classes (e.g., antiseptic: povidone iodine, antibiotic ointments, enzymatic debriders)
|
| 192 |
-
- Mention **techniques** (e.g., sharp debridement, NPWT, moisture balance, pressure offloading, dressing frequency)
|
| 193 |
-
- Avoid repeating guidelines — **apply them**
|
| 194 |
-
#### **3. Key Risk Factors**
|
| 195 |
-
Explain how the patient's condition (e.g., diabetic, poor circulation, advanced age, poor hygiene) may affect wound healing
|
| 196 |
-
#### **4. Prognosis & Monitoring Advice**
|
| 197 |
-
- Mention how often wound should be reassessed
|
| 198 |
-
- Indicate signs to monitor for deterioration or improvement
|
| 199 |
-
- Include when escalation to specialist is necessary
|
| 200 |
-
#### **5. Disclaimer**
|
| 201 |
-
This is an AI-generated summary based on available data. It is not a substitute for clinical evaluation by a wound care professional.
|
| 202 |
-
**Note:** Every dressing change is a chance for wound reassessment. Always perform a thorough wound evaluation at each dressing change.
|
| 203 |
-
---
|
| 204 |
-
🧾 **INPUT DATA**
|
| 205 |
-
**Patient Info:**
|
| 206 |
-
{patient_info}
|
| 207 |
-
**Wound Details:**
|
| 208 |
-
- Type: {visual_results['wound_type']}
|
| 209 |
-
- Size: {visual_results['length_cm']} × {visual_results['breadth_cm']} cm
|
| 210 |
-
- Area: {visual_results['surface_area_cm2']} cm²
|
| 211 |
-
**Clinical Guideline Evidence:**
|
| 212 |
-
{guideline_context}
|
| 213 |
-
You may now begin your analysis and generate the two-part report.
|
| 214 |
"""
|
| 215 |
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
"
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
"
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
output = pipe(
|
| 233 |
text=messages,
|
| 234 |
-
max_new_tokens=max_new_tokens or
|
| 235 |
do_sample=False,
|
|
|
|
|
|
|
| 236 |
)
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
except Exception as e:
|
| 241 |
-
logging.error(f"
|
| 242 |
-
return f"❌
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
# =============== AI PROCESSOR CLASS ===============
|
| 245 |
class AIProcessor:
|
|
@@ -252,12 +224,12 @@ class AIProcessor:
|
|
| 252 |
self.hf_token = HF_TOKEN
|
| 253 |
|
| 254 |
def perform_visual_analysis(self, image_pil: Image.Image) -> dict:
|
| 255 |
-
"""Performs the full visual analysis pipeline
|
| 256 |
try:
|
| 257 |
# Convert PIL to OpenCV format
|
| 258 |
image_cv = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
|
| 259 |
|
| 260 |
-
# YOLO Detection
|
| 261 |
results = self.models_cache["det"].predict(image_cv, verbose=False, device="cpu")
|
| 262 |
if not results or not results[0].boxes:
|
| 263 |
raise ValueError("No wound could be detected.")
|
|
@@ -265,13 +237,13 @@ class AIProcessor:
|
|
| 265 |
box = results[0].boxes[0].xyxy[0].cpu().numpy().astype(int)
|
| 266 |
detected_region_cv = image_cv[box[1]:box[3], box[0]:box[2]]
|
| 267 |
|
| 268 |
-
# Segmentation
|
| 269 |
input_size = self.models_cache["seg"].input_shape[1:3]
|
| 270 |
resized = cv2.resize(detected_region_cv, (input_size[1], input_size[0]))
|
| 271 |
mask_pred = self.models_cache["seg"].predict(np.expand_dims(resized / 255.0, 0), verbose=0)[0]
|
| 272 |
mask_np = (mask_pred[:, :, 0] > 0.5).astype(np.uint8)
|
| 273 |
|
| 274 |
-
# Calculate measurements
|
| 275 |
contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 276 |
length, breadth, area = (0, 0, 0)
|
| 277 |
if contours:
|
|
@@ -279,23 +251,25 @@ class AIProcessor:
|
|
| 279 |
x, y, w, h = cv2.boundingRect(cnt)
|
| 280 |
length, breadth, area = round(h / self.px_per_cm, 2), round(w / self.px_per_cm, 2), round(cv2.contourArea(cnt) / (self.px_per_cm ** 2), 2)
|
| 281 |
|
| 282 |
-
# Classification
|
| 283 |
detected_image_pil = Image.fromarray(cv2.cvtColor(detected_region_cv, cv2.COLOR_BGR2RGB))
|
| 284 |
wound_type = max(self.models_cache["cls"](detected_image_pil), key=lambda x: x["score"])["label"]
|
| 285 |
|
| 286 |
-
# Save
|
| 287 |
-
det_vis = image_cv.copy()
|
| 288 |
-
cv2.rectangle(det_vis, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
| 289 |
os.makedirs(f"{self.uploads_dir}/analysis", exist_ok=True)
|
| 290 |
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
det_path = f"{self.uploads_dir}/analysis/detection_{ts}.png"
|
| 292 |
cv2.imwrite(det_path, det_vis)
|
| 293 |
|
| 294 |
-
#
|
| 295 |
original_path = f"{self.uploads_dir}/analysis/original_{ts}.png"
|
| 296 |
cv2.imwrite(original_path, image_cv)
|
| 297 |
|
| 298 |
-
#
|
| 299 |
seg_path = None
|
| 300 |
if contours:
|
| 301 |
mask_resized = cv2.resize(mask_np * 255, (detected_region_cv.shape[1], detected_region_cv.shape[0]), interpolation=cv2.INTER_NEAREST)
|
|
@@ -328,9 +302,9 @@ class AIProcessor:
|
|
| 328 |
if not vector_store:
|
| 329 |
return "Knowledge base is not available."
|
| 330 |
|
| 331 |
-
retriever = vector_store.as_retriever(search_kwargs={"k":
|
| 332 |
docs = retriever.invoke(query)
|
| 333 |
-
return "\n\n".join([f"Source: {doc.metadata.get('source', 'N/A')}
|
| 334 |
|
| 335 |
except Exception as e:
|
| 336 |
logging.error(f"Guidelines query failed: {e}")
|
|
@@ -340,16 +314,18 @@ class AIProcessor:
|
|
| 340 |
self, patient_info: str, visual_results: dict, guideline_context: str,
|
| 341 |
image_pil: Image.Image, max_new_tokens: int = None
|
| 342 |
) -> str:
|
| 343 |
-
"""Generate final report using MedGemma
|
| 344 |
try:
|
| 345 |
-
|
|
|
|
| 346 |
patient_info, visual_results, guideline_context, image_pil, max_new_tokens
|
| 347 |
)
|
| 348 |
|
|
|
|
| 349 |
if report and report.strip() and not report.startswith("❌") and not report.startswith("⚠️"):
|
| 350 |
return report
|
| 351 |
else:
|
| 352 |
-
logging.warning("MedGemma returned
|
| 353 |
return self._generate_fallback_report(patient_info, visual_results, guideline_context)
|
| 354 |
|
| 355 |
except Exception as e:
|
|
@@ -359,9 +335,9 @@ class AIProcessor:
|
|
| 359 |
def _generate_fallback_report(
|
| 360 |
self, patient_info: str, visual_results: dict, guideline_context: str
|
| 361 |
) -> str:
|
| 362 |
-
"""Generate fallback report if MedGemma fails."""
|
| 363 |
|
| 364 |
-
report = f"""# 🩺 SmartHeal AI - Wound Analysis Report
|
| 365 |
|
| 366 |
## 📋 Patient Information
|
| 367 |
{patient_info}
|
|
@@ -370,47 +346,96 @@ class AIProcessor:
|
|
| 370 |
- **Wound Type**: {visual_results.get('wound_type', 'Unknown')}
|
| 371 |
- **Dimensions**: {visual_results.get('length_cm', 0)} cm × {visual_results.get('breadth_cm', 0)} cm
|
| 372 |
- **Surface Area**: {visual_results.get('surface_area_cm2', 0)} cm²
|
| 373 |
-
- **Detection Confidence**: {visual_results.get('detection_confidence', 0):.
|
| 374 |
|
| 375 |
-
## 📊 Analysis Images
|
| 376 |
-
- **
|
| 377 |
-
- **
|
|
|
|
| 378 |
|
| 379 |
-
##
|
| 380 |
-
{guideline_context[:1000]}{'...' if len(guideline_context) > 1000 else ''}
|
| 381 |
|
| 382 |
-
|
| 383 |
-
Based on
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
### Clinical Observations
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
1. **
|
| 392 |
-
2. **
|
| 393 |
-
3. **
|
| 394 |
-
4. **
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
|
| 402 |
## 🏥 Next Steps
|
| 403 |
-
1. **Professional Assessment**: Consult with a qualified wound care specialist
|
| 404 |
-
2. **Comprehensive Evaluation**: Consider patient's overall health status and comorbidities
|
| 405 |
-
3. **Treatment Protocol**: Develop individualized care plan based on clinical findings
|
| 406 |
-
4. **Monitoring Plan**: Establish regular assessment schedule
|
| 407 |
|
| 408 |
-
|
| 409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
---
|
| 412 |
-
*Generated by SmartHeal AI - Advanced Wound Care Analysis System*
|
| 413 |
-
*Report Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}*
|
|
|
|
| 414 |
"""
|
| 415 |
return report
|
| 416 |
|
|
@@ -449,7 +474,7 @@ This automated analysis is provided for informational purposes only and does not
|
|
| 449 |
return ""
|
| 450 |
|
| 451 |
def full_analysis_pipeline(self, image_pil: Image.Image, questionnaire_data: dict) -> dict:
|
| 452 |
-
"""Run full analysis pipeline
|
| 453 |
try:
|
| 454 |
# Save image first
|
| 455 |
saved_path = self.save_and_commit_image(image_pil)
|
|
@@ -459,10 +484,10 @@ This automated analysis is provided for informational purposes only and does not
|
|
| 459 |
visual_results = self.perform_visual_analysis(image_pil)
|
| 460 |
logging.info(f"Visual analysis completed: {visual_results}")
|
| 461 |
|
| 462 |
-
# Process questionnaire data
|
| 463 |
patient_info = f"Age: {questionnaire_data.get('age', 'N/A')}, Diabetic: {questionnaire_data.get('diabetic', 'N/A')}, Allergies: {questionnaire_data.get('allergies', 'N/A')}, Date of Wound Sustained: {questionnaire_data.get('date_of_injury', 'N/A')}, Professional Care: {questionnaire_data.get('professional_care', 'N/A')}, Oozing/Bleeding: {questionnaire_data.get('oozing_bleeding', 'N/A')}, Infection: {questionnaire_data.get('infection', 'N/A')}, Moisture: {questionnaire_data.get('moisture', 'N/A')}"
|
| 464 |
|
| 465 |
-
# Query guidelines
|
| 466 |
query = f"best practices for managing a {visual_results['wound_type']} with moisture level '{questionnaire_data.get('moisture', 'unknown')}' and signs of infection '{questionnaire_data.get('infection', 'unknown')}' in a patient who is diabetic '{questionnaire_data.get('diabetic', 'unknown')}'"
|
| 467 |
guideline_context = self.query_guidelines(query)
|
| 468 |
logging.info("Guidelines queried successfully")
|
|
@@ -517,264 +542,4 @@ This automated analysis is provided for informational purposes only and does not
|
|
| 517 |
'report': f"Analysis initialization failed: {str(e)}",
|
| 518 |
'saved_image_path': None,
|
| 519 |
'guideline_context': ""
|
| 520 |
-
}
|
| 521 |
-
|
| 522 |
-
def _assess_risk_legacy(self, questionnaire_data: dict) -> dict:
|
| 523 |
-
"""Legacy risk assessment function - maintains original function name."""
|
| 524 |
-
risk_factors = []
|
| 525 |
-
risk_score = 0
|
| 526 |
-
|
| 527 |
-
try:
|
| 528 |
-
# Age assessment
|
| 529 |
-
age = questionnaire_data.get('age', 0)
|
| 530 |
-
if isinstance(age, str):
|
| 531 |
-
try:
|
| 532 |
-
age = int(age)
|
| 533 |
-
except ValueError:
|
| 534 |
-
age = 0
|
| 535 |
-
|
| 536 |
-
if age > 65:
|
| 537 |
-
risk_factors.append("Advanced age (>65)")
|
| 538 |
-
risk_score += 2
|
| 539 |
-
elif age > 50:
|
| 540 |
-
risk_factors.append("Older adult (50-65)")
|
| 541 |
-
risk_score += 1
|
| 542 |
-
|
| 543 |
-
# Wound duration assessment
|
| 544 |
-
duration = str(questionnaire_data.get('wound_duration', '')).lower()
|
| 545 |
-
if any(term in duration for term in ['month', 'months', 'year', 'years']):
|
| 546 |
-
risk_factors.append("Chronic wound (>4 weeks)")
|
| 547 |
-
risk_score += 3
|
| 548 |
-
elif any(term in duration for term in ['week', 'weeks']):
|
| 549 |
-
# Try to extract number of weeks
|
| 550 |
-
import re
|
| 551 |
-
weeks_match = re.search(r'(\d+)\s*week', duration)
|
| 552 |
-
if weeks_match and int(weeks_match.group(1)) > 4:
|
| 553 |
-
risk_factors.append("Chronic wound (>4 weeks)")
|
| 554 |
-
risk_score += 3
|
| 555 |
-
|
| 556 |
-
# Pain level assessment
|
| 557 |
-
pain = questionnaire_data.get('pain_level', 0)
|
| 558 |
-
if isinstance(pain, str):
|
| 559 |
-
try:
|
| 560 |
-
pain = float(pain)
|
| 561 |
-
except ValueError:
|
| 562 |
-
pain = 0
|
| 563 |
-
|
| 564 |
-
if pain >= 7:
|
| 565 |
-
risk_factors.append("High pain level (≥7/10)")
|
| 566 |
-
risk_score += 2
|
| 567 |
-
elif pain >= 5:
|
| 568 |
-
risk_factors.append("Moderate pain level (5-6/10)")
|
| 569 |
-
risk_score += 1
|
| 570 |
-
|
| 571 |
-
# Medical history assessment
|
| 572 |
-
medical_history = str(questionnaire_data.get('medical_history', '')).lower()
|
| 573 |
-
diabetic_status = str(questionnaire_data.get('diabetic', '')).lower()
|
| 574 |
-
|
| 575 |
-
if 'diabetes' in medical_history or 'yes' in diabetic_status:
|
| 576 |
-
risk_factors.append("Diabetes mellitus")
|
| 577 |
-
risk_score += 3
|
| 578 |
-
|
| 579 |
-
if any(term in medical_history for term in ['vascular', 'circulation', 'arterial', 'venous']):
|
| 580 |
-
risk_factors.append("Vascular disease")
|
| 581 |
-
risk_score += 2
|
| 582 |
-
|
| 583 |
-
if any(term in medical_history for term in ['immune', 'immunocompromised', 'steroid', 'chemotherapy']):
|
| 584 |
-
risk_factors.append("Immune system compromise")
|
| 585 |
-
risk_score += 2
|
| 586 |
-
|
| 587 |
-
if any(term in medical_history for term in ['smoking', 'smoker', 'tobacco']):
|
| 588 |
-
risk_factors.append("Smoking history")
|
| 589 |
-
risk_score += 2
|
| 590 |
-
|
| 591 |
-
# Infection signs
|
| 592 |
-
infection_signs = str(questionnaire_data.get('infection', '')).lower()
|
| 593 |
-
if 'yes' in infection_signs:
|
| 594 |
-
risk_factors.append("Signs of infection present")
|
| 595 |
-
risk_score += 3
|
| 596 |
-
|
| 597 |
-
# Moisture level
|
| 598 |
-
moisture = str(questionnaire_data.get('moisture', '')).lower()
|
| 599 |
-
if any(term in moisture for term in ['wet', 'heavy', 'excessive']):
|
| 600 |
-
risk_factors.append("Excessive wound exudate")
|
| 601 |
-
risk_score += 1
|
| 602 |
-
|
| 603 |
-
# Determine risk level
|
| 604 |
-
if risk_score >= 8:
|
| 605 |
-
risk_level = "Very High"
|
| 606 |
-
elif risk_score >= 6:
|
| 607 |
-
risk_level = "High"
|
| 608 |
-
elif risk_score >= 3:
|
| 609 |
-
risk_level = "Moderate"
|
| 610 |
-
else:
|
| 611 |
-
risk_level = "Low"
|
| 612 |
-
|
| 613 |
-
return {
|
| 614 |
-
'risk_score': risk_score,
|
| 615 |
-
'risk_level': risk_level,
|
| 616 |
-
'risk_factors': risk_factors,
|
| 617 |
-
'recommendations': self._get_risk_recommendations(risk_level, risk_factors)
|
| 618 |
-
}
|
| 619 |
-
|
| 620 |
-
except Exception as e:
|
| 621 |
-
logging.error(f"Risk assessment error: {e}")
|
| 622 |
-
return {
|
| 623 |
-
'risk_score': 0,
|
| 624 |
-
'risk_level': 'Unknown',
|
| 625 |
-
'risk_factors': [],
|
| 626 |
-
'recommendations': ["Unable to assess risk due to data processing error"]
|
| 627 |
-
}
|
| 628 |
-
|
| 629 |
-
def _get_risk_recommendations(self, risk_level: str, risk_factors: list) -> list:
|
| 630 |
-
"""Generate risk-based recommendations."""
|
| 631 |
-
recommendations = []
|
| 632 |
-
|
| 633 |
-
if risk_level in ["High", "Very High"]:
|
| 634 |
-
recommendations.append("Urgent referral to wound care specialist recommended")
|
| 635 |
-
recommendations.append("Consider daily wound monitoring")
|
| 636 |
-
recommendations.append("Implement aggressive wound care protocol")
|
| 637 |
-
elif risk_level == "Moderate":
|
| 638 |
-
recommendations.append("Regular wound care follow-up every 2-3 days")
|
| 639 |
-
recommendations.append("Monitor for signs of deterioration")
|
| 640 |
-
else:
|
| 641 |
-
recommendations.append("Standard wound care monitoring")
|
| 642 |
-
recommendations.append("Weekly assessment recommended")
|
| 643 |
-
|
| 644 |
-
# Specific recommendations based on risk factors
|
| 645 |
-
if "Diabetes mellitus" in risk_factors:
|
| 646 |
-
recommendations.append("Strict glycemic control essential")
|
| 647 |
-
recommendations.append("Monitor for diabetic complications")
|
| 648 |
-
|
| 649 |
-
if "Signs of infection present" in risk_factors:
|
| 650 |
-
recommendations.append("Consider antibiotic therapy")
|
| 651 |
-
recommendations.append("Increase wound cleaning frequency")
|
| 652 |
-
|
| 653 |
-
if "Excessive wound exudate" in risk_factors:
|
| 654 |
-
recommendations.append("Use high-absorption dressings")
|
| 655 |
-
recommendations.append("More frequent dressing changes may be needed")
|
| 656 |
-
|
| 657 |
-
return recommendations
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
# =============== STANDALONE SAVE AND COMMIT FUNCTION ===============
|
| 661 |
-
def save_and_commit_image(image_to_save):
|
| 662 |
-
"""Saves an image locally and commits it to the separate HF Dataset repository - EXACTLY like working reference."""
|
| 663 |
-
if not image_to_save:
|
| 664 |
-
return
|
| 665 |
-
|
| 666 |
-
timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
| 667 |
-
filename = f"{timestamp}.png"
|
| 668 |
-
local_save_path = os.path.join(UPLOADS_DIR, filename)
|
| 669 |
-
|
| 670 |
-
image_to_save.convert("RGB").save(local_save_path)
|
| 671 |
-
logging.info(f"✅ Image saved to temporary local storage: {local_save_path}")
|
| 672 |
-
|
| 673 |
-
if DATASET_ID and HF_TOKEN:
|
| 674 |
-
try:
|
| 675 |
-
api = HfApi()
|
| 676 |
-
repo_path = f"images/{filename}"
|
| 677 |
-
|
| 678 |
-
logging.info(f"Attempting to commit {local_save_path} to DATASET {DATASET_ID}...")
|
| 679 |
-
|
| 680 |
-
api.upload_file(
|
| 681 |
-
path_or_fileobj=local_save_path,
|
| 682 |
-
path_in_repo=repo_path,
|
| 683 |
-
repo_id=DATASET_ID,
|
| 684 |
-
repo_type="dataset",
|
| 685 |
-
commit_message=f"Upload wound image: {filename}"
|
| 686 |
-
)
|
| 687 |
-
logging.info(f"✅ Image successfully committed to dataset.")
|
| 688 |
-
except Exception as e:
|
| 689 |
-
logging.error(f"❌ FAILED TO COMMIT IMAGE TO DATASET: {e}")
|
| 690 |
-
else:
|
| 691 |
-
logging.warning("DATASET_ID or HF_TOKEN not set. Skipping file commit.")
|
| 692 |
-
|
| 693 |
-
# =============== MAIN ANALYSIS FUNCTION (with @spaces.GPU) - EXACTLY LIKE WORKING REFERENCE ===============
|
| 694 |
-
@spaces.GPU(enable_queue=True, duration=120)
|
| 695 |
-
def analyze(image, age, diabetic, allergies, date_of_injury, professional_care, oozing_bleeding, infection, moisture):
|
| 696 |
-
"""Main analysis function with GPU decorator - EXACTLY like working reference."""
|
| 697 |
-
try:
|
| 698 |
-
yield None, None, "⏳ Initializing... Loading AI models..."
|
| 699 |
-
|
| 700 |
-
# Load all models - using global cache
|
| 701 |
-
if "medgemma_pipe" not in models_cache:
|
| 702 |
-
from transformers import pipeline
|
| 703 |
-
models_cache["medgemma_pipe"] = pipeline(
|
| 704 |
-
"image-text-to-text",
|
| 705 |
-
model="google/medgemma-4b-it",
|
| 706 |
-
torch_dtype=torch.bfloat16,
|
| 707 |
-
device_map="auto",
|
| 708 |
-
token=HF_TOKEN
|
| 709 |
-
)
|
| 710 |
-
logging.info("✅ All models loaded.")
|
| 711 |
-
|
| 712 |
-
yield None, None, "⏳ Setting up knowledge base from guidelines..."
|
| 713 |
-
|
| 714 |
-
# Save image
|
| 715 |
-
save_and_commit_image(image)
|
| 716 |
-
|
| 717 |
-
# Create processor instance
|
| 718 |
-
processor = AIProcessor()
|
| 719 |
-
|
| 720 |
-
yield None, None, "⏳ Performing visual analysis..."
|
| 721 |
-
|
| 722 |
-
# Perform visual analysis - EXACTLY like working reference
|
| 723 |
-
image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
| 724 |
-
results = models_cache["det"].predict(image_cv, verbose=False, device="cpu")
|
| 725 |
-
if not results or not results[0].boxes:
|
| 726 |
-
raise ValueError("No wound could be detected.")
|
| 727 |
-
|
| 728 |
-
box = results[0].boxes[0].xyxy[0].cpu().numpy().astype(int)
|
| 729 |
-
detected_region_cv = image_cv[box[1]:box[3], box[0]:box[2]]
|
| 730 |
-
|
| 731 |
-
input_size = models_cache["seg"].input_shape[1:3]
|
| 732 |
-
resized = cv2.resize(detected_region_cv, (input_size[1], input_size[0]))
|
| 733 |
-
mask_pred = models_cache["seg"].predict(np.expand_dims(resized / 255.0, 0), verbose=0)[0]
|
| 734 |
-
mask_np = (mask_pred[:, :, 0] > 0.5).astype(np.uint8)
|
| 735 |
-
|
| 736 |
-
contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 737 |
-
length, breadth, area = (0, 0, 0)
|
| 738 |
-
if contours:
|
| 739 |
-
cnt = max(contours, key=cv2.contourArea)
|
| 740 |
-
x, y, w, h = cv2.boundingRect(cnt)
|
| 741 |
-
length, breadth, area = round(h / PIXELS_PER_CM, 2), round(w / PIXELS_PER_CM, 2), round(cv2.contourArea(cnt) / (PIXELS_PER_CM ** 2), 2)
|
| 742 |
-
|
| 743 |
-
detected_image_pil = Image.fromarray(cv2.cvtColor(detected_region_cv, cv2.COLOR_BGR2RGB))
|
| 744 |
-
wound_type = max(models_cache["cls"](detected_image_pil), key=lambda x: x["score"])["label"]
|
| 745 |
-
|
| 746 |
-
visual_results = {"wound_type": wound_type, "length_cm": length, "breadth_cm": breadth, "surface_area_cm2": area}
|
| 747 |
-
|
| 748 |
-
# Create visualization images
|
| 749 |
-
segmented_mask = Image.fromarray(cv2.resize(mask_np * 255, (detected_region_cv.shape[1], detected_region_cv.shape[0]), interpolation=cv2.INTER_NEAREST))
|
| 750 |
-
|
| 751 |
-
yield detected_image_pil, segmented_mask, f"✅ Visual analysis complete. Detected: {visual_results['wound_type']}. Querying guidelines..."
|
| 752 |
-
|
| 753 |
-
# Query guidelines
|
| 754 |
-
patient_info = f"Age: {age}, Diabetic: {diabetic}, Allergies: {allergies}, Date of Wound Sustained: {date_of_injury}, Professional Care: {professional_care}, Oozing/Bleeding: {oozing_bleeding}, Infection: {infection}, Moisture: {moisture}"
|
| 755 |
-
query = f"best practices for managing a {visual_results['wound_type']} with moisture level '{moisture}' and signs of infection '{infection}' in a patient who is diabetic '{diabetic}'"
|
| 756 |
-
guideline_context = processor.query_guidelines(query)
|
| 757 |
-
|
| 758 |
-
yield detected_image_pil, segmented_mask, "✅ Guidelines queried. Generating final report..."
|
| 759 |
-
|
| 760 |
-
# Generate final report using MedGemma
|
| 761 |
-
final_report = generate_medgemma_report(
|
| 762 |
-
patient_info,
|
| 763 |
-
visual_results,
|
| 764 |
-
guideline_context,
|
| 765 |
-
image_pil=image
|
| 766 |
-
)
|
| 767 |
-
|
| 768 |
-
visual_summary = f"""## 📊 Programmatic Visual Analysis
|
| 769 |
-
| Metric | Result |
|
| 770 |
-
| :--- | :--- |
|
| 771 |
-
| **Detected Wound Type** | {visual_results['wound_type']} |
|
| 772 |
-
| **Estimated Dimensions** | {visual_results['length_cm']}cm x {visual_results['breadth_cm']}cm (Area: {visual_results['surface_area_cm2']}cm²) |
|
| 773 |
-
---
|
| 774 |
-
"""
|
| 775 |
-
final_output_text = visual_summary + "## 🩺 MedHeal-AI Clinical Assessment\n" + final_report
|
| 776 |
-
yield detected_image_pil, segmented_mask, final_output_text
|
| 777 |
-
|
| 778 |
-
except Exception as e:
|
| 779 |
-
logging.error(f"An error occurred during analysis: {e}", exc_info=True)
|
| 780 |
-
yield None, None, f"❌ **An error occurred:** {e}"
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
import spaces
|
| 9 |
import torch
|
| 10 |
+
import time
|
| 11 |
|
| 12 |
from huggingface_hub import HfApi, HfFolder
|
| 13 |
from langchain_community.document_loaders import PyPDFLoader
|
|
|
|
| 29 |
SEG_MODEL_PATH = "src/segmentation_model.h5"
|
| 30 |
GUIDELINE_PDFS = ["src/eHealth in Wound Care.pdf", "src/IWGDF Guideline.pdf", "src/evaluation.pdf"]
|
| 31 |
DATASET_ID = "SmartHeal/wound-image-uploads"
|
| 32 |
+
MAX_NEW_TOKENS = 1024 # Reduced for stability
|
| 33 |
PIXELS_PER_CM = 38
|
| 34 |
|
| 35 |
# =============== GLOBAL CACHES ===============
|
|
|
|
| 132 |
initialize_cpu_models()
|
| 133 |
setup_knowledge_base()
|
| 134 |
|
| 135 |
+
# =============== GPU-DECORATED MEDGEMMA FUNCTION WITH TIMEOUT HANDLING ===============
|
| 136 |
+
@spaces.GPU(enable_queue=True, duration=90) # Reduced duration for stability
|
| 137 |
+
def generate_medgemma_report_with_timeout(
|
| 138 |
patient_info,
|
| 139 |
visual_results,
|
| 140 |
guideline_context,
|
| 141 |
image_pil,
|
| 142 |
max_new_tokens=None,
|
| 143 |
):
|
| 144 |
+
"""GPU-only function for MedGemma report generation with improved timeout handling."""
|
| 145 |
+
import torch
|
| 146 |
from transformers import pipeline
|
| 147 |
+
|
| 148 |
+
try:
|
| 149 |
+
# Clear GPU cache first
|
| 150 |
+
if torch.cuda.is_available():
|
| 151 |
+
torch.cuda.empty_cache()
|
| 152 |
+
|
| 153 |
+
# Use a shorter, more focused prompt to reduce processing time
|
| 154 |
+
prompt = f"""
|
| 155 |
+
You are a medical AI assistant. Analyze this wound image and patient data to provide a clinical assessment.
|
| 156 |
|
| 157 |
+
Patient: {patient_info}
|
| 158 |
+
Wound: {visual_results.get('wound_type', 'Unknown')} - {visual_results.get('length_cm', 0)}×{visual_results.get('breadth_cm', 0)}cm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
+
Provide a structured report with:
|
| 161 |
+
1. Clinical Summary (wound appearance, size, location)
|
| 162 |
+
2. Treatment Recommendations (dressings, care protocols)
|
| 163 |
+
3. Risk Assessment (healing factors)
|
| 164 |
+
4. Monitoring Plan (follow-up schedule)
|
| 165 |
|
| 166 |
+
Keep response concise but medically comprehensive.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
"""
|
| 168 |
|
| 169 |
+
# Initialize pipeline with optimized settings
|
| 170 |
+
pipe = pipeline(
|
| 171 |
+
"image-text-to-text",
|
| 172 |
+
model="google/medgemma-4b-it",
|
| 173 |
+
torch_dtype=torch.bfloat16,
|
| 174 |
+
device_map="auto",
|
| 175 |
+
token=HF_TOKEN,
|
| 176 |
+
model_kwargs={"low_cpu_mem_usage": True, "use_cache": True}
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
messages = [
|
| 180 |
+
{
|
| 181 |
+
"role": "user",
|
| 182 |
+
"content": [
|
| 183 |
+
{"type": "image", "image": image_pil},
|
| 184 |
+
{"type": "text", "text": prompt},
|
| 185 |
+
]
|
| 186 |
+
}
|
| 187 |
+
]
|
| 188 |
+
|
| 189 |
+
# Generate with conservative settings
|
| 190 |
+
start_time = time.time()
|
| 191 |
output = pipe(
|
| 192 |
text=messages,
|
| 193 |
+
max_new_tokens=max_new_tokens or 800, # Reduced for stability
|
| 194 |
do_sample=False,
|
| 195 |
+
temperature=0.7,
|
| 196 |
+
pad_token_id=pipe.tokenizer.eos_token_id
|
| 197 |
)
|
| 198 |
+
|
| 199 |
+
processing_time = time.time() - start_time
|
| 200 |
+
logging.info(f"✅ MedGemma processing completed in {processing_time:.2f} seconds")
|
| 201 |
+
|
| 202 |
+
if output and len(output) > 0:
|
| 203 |
+
result = output[0]["generated_text"][-1].get("content", "").strip()
|
| 204 |
+
return result if result else "⚠️ Empty response generated"
|
| 205 |
+
else:
|
| 206 |
+
return "⚠️ No output generated"
|
| 207 |
+
|
| 208 |
except Exception as e:
|
| 209 |
+
logging.error(f"❌ MedGemma generation error: {e}")
|
| 210 |
+
return f"❌ Report generation failed: {str(e)}"
|
| 211 |
+
finally:
|
| 212 |
+
# Clear GPU memory
|
| 213 |
+
if torch.cuda.is_available():
|
| 214 |
+
torch.cuda.empty_cache()
|
| 215 |
|
| 216 |
# =============== AI PROCESSOR CLASS ===============
|
| 217 |
class AIProcessor:
|
|
|
|
| 224 |
self.hf_token = HF_TOKEN
|
| 225 |
|
| 226 |
def perform_visual_analysis(self, image_pil: Image.Image) -> dict:
|
| 227 |
+
"""Performs the full visual analysis pipeline."""
|
| 228 |
try:
|
| 229 |
# Convert PIL to OpenCV format
|
| 230 |
image_cv = cv2.cvtColor(np.array(image_pil), cv2.COLOR_RGB2BGR)
|
| 231 |
|
| 232 |
+
# YOLO Detection
|
| 233 |
results = self.models_cache["det"].predict(image_cv, verbose=False, device="cpu")
|
| 234 |
if not results or not results[0].boxes:
|
| 235 |
raise ValueError("No wound could be detected.")
|
|
|
|
| 237 |
box = results[0].boxes[0].xyxy[0].cpu().numpy().astype(int)
|
| 238 |
detected_region_cv = image_cv[box[1]:box[3], box[0]:box[2]]
|
| 239 |
|
| 240 |
+
# Segmentation
|
| 241 |
input_size = self.models_cache["seg"].input_shape[1:3]
|
| 242 |
resized = cv2.resize(detected_region_cv, (input_size[1], input_size[0]))
|
| 243 |
mask_pred = self.models_cache["seg"].predict(np.expand_dims(resized / 255.0, 0), verbose=0)[0]
|
| 244 |
mask_np = (mask_pred[:, :, 0] > 0.5).astype(np.uint8)
|
| 245 |
|
| 246 |
+
# Calculate measurements
|
| 247 |
contours, _ = cv2.findContours(mask_np, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 248 |
length, breadth, area = (0, 0, 0)
|
| 249 |
if contours:
|
|
|
|
| 251 |
x, y, w, h = cv2.boundingRect(cnt)
|
| 252 |
length, breadth, area = round(h / self.px_per_cm, 2), round(w / self.px_per_cm, 2), round(cv2.contourArea(cnt) / (self.px_per_cm ** 2), 2)
|
| 253 |
|
| 254 |
+
# Classification
|
| 255 |
detected_image_pil = Image.fromarray(cv2.cvtColor(detected_region_cv, cv2.COLOR_BGR2RGB))
|
| 256 |
wound_type = max(self.models_cache["cls"](detected_image_pil), key=lambda x: x["score"])["label"]
|
| 257 |
|
| 258 |
+
# Save visualization images
|
|
|
|
|
|
|
| 259 |
os.makedirs(f"{self.uploads_dir}/analysis", exist_ok=True)
|
| 260 |
ts = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 261 |
+
|
| 262 |
+
# Detection visualization
|
| 263 |
+
det_vis = image_cv.copy()
|
| 264 |
+
cv2.rectangle(det_vis, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
|
| 265 |
det_path = f"{self.uploads_dir}/analysis/detection_{ts}.png"
|
| 266 |
cv2.imwrite(det_path, det_vis)
|
| 267 |
|
| 268 |
+
# Original image
|
| 269 |
original_path = f"{self.uploads_dir}/analysis/original_{ts}.png"
|
| 270 |
cv2.imwrite(original_path, image_cv)
|
| 271 |
|
| 272 |
+
# Segmentation visualization
|
| 273 |
seg_path = None
|
| 274 |
if contours:
|
| 275 |
mask_resized = cv2.resize(mask_np * 255, (detected_region_cv.shape[1], detected_region_cv.shape[0]), interpolation=cv2.INTER_NEAREST)
|
|
|
|
| 302 |
if not vector_store:
|
| 303 |
return "Knowledge base is not available."
|
| 304 |
|
| 305 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 5}) # Reduced for efficiency
|
| 306 |
docs = retriever.invoke(query)
|
| 307 |
+
return "\n\n".join([f"Source: {doc.metadata.get('source', 'N/A')}\nContent: {doc.page_content[:300]}..." for doc in docs])
|
| 308 |
|
| 309 |
except Exception as e:
|
| 310 |
logging.error(f"Guidelines query failed: {e}")
|
|
|
|
| 314 |
self, patient_info: str, visual_results: dict, guideline_context: str,
|
| 315 |
image_pil: Image.Image, max_new_tokens: int = None
|
| 316 |
) -> str:
|
| 317 |
+
"""Generate final report using MedGemma with timeout handling."""
|
| 318 |
try:
|
| 319 |
+
# Try MedGemma with timeout handling
|
| 320 |
+
report = generate_medgemma_report_with_timeout(
|
| 321 |
patient_info, visual_results, guideline_context, image_pil, max_new_tokens
|
| 322 |
)
|
| 323 |
|
| 324 |
+
# Check if report is valid
|
| 325 |
if report and report.strip() and not report.startswith("❌") and not report.startswith("⚠️"):
|
| 326 |
return report
|
| 327 |
else:
|
| 328 |
+
logging.warning("MedGemma returned invalid response, using fallback")
|
| 329 |
return self._generate_fallback_report(patient_info, visual_results, guideline_context)
|
| 330 |
|
| 331 |
except Exception as e:
|
|
|
|
| 335 |
def _generate_fallback_report(
|
| 336 |
self, patient_info: str, visual_results: dict, guideline_context: str
|
| 337 |
) -> str:
|
| 338 |
+
"""Generate comprehensive fallback report if MedGemma fails."""
|
| 339 |
|
| 340 |
+
report = f"""# 🩺 SmartHeal AI - Comprehensive Wound Analysis Report
|
| 341 |
|
| 342 |
## 📋 Patient Information
|
| 343 |
{patient_info}
|
|
|
|
| 346 |
- **Wound Type**: {visual_results.get('wound_type', 'Unknown')}
|
| 347 |
- **Dimensions**: {visual_results.get('length_cm', 0)} cm × {visual_results.get('breadth_cm', 0)} cm
|
| 348 |
- **Surface Area**: {visual_results.get('surface_area_cm2', 0)} cm²
|
| 349 |
+
- **Detection Confidence**: {visual_results.get('detection_confidence', 0):.1%}
|
| 350 |
|
| 351 |
+
## 📊 Analysis Images Available
|
| 352 |
+
- **Original Image**: {visual_results.get('original_image_path', 'Available')}
|
| 353 |
+
- **Detection Visualization**: {visual_results.get('detection_image_path', 'Available')}
|
| 354 |
+
- **Segmentation Overlay**: {visual_results.get('segmentation_image_path', 'Available')}
|
| 355 |
|
| 356 |
+
## 🎯 Clinical Assessment Summary
|
|
|
|
| 357 |
|
| 358 |
+
### Wound Classification
|
| 359 |
+
Based on automated analysis, this wound has been classified as **{visual_results.get('wound_type', 'Unspecified')}** with the following characteristics:
|
| 360 |
+
- Size: {visual_results.get('length_cm', 0)} × {visual_results.get('breadth_cm', 0)} cm
|
| 361 |
+
- Total area: {visual_results.get('surface_area_cm2', 0)} cm²
|
| 362 |
+
- Detection confidence: {visual_results.get('detection_confidence', 0):.1%}
|
| 363 |
|
| 364 |
### Clinical Observations
|
| 365 |
+
The automated visual analysis provides quantitative measurements that should be verified through clinical examination. The wound type classification helps guide initial treatment considerations.
|
| 366 |
+
|
| 367 |
+
## 💊 Treatment Recommendations
|
| 368 |
+
|
| 369 |
+
### Wound Care Protocol
|
| 370 |
+
1. **Assessment**: Comprehensive clinical evaluation by qualified healthcare professional
|
| 371 |
+
2. **Cleaning**: Gentle wound cleansing with appropriate solution
|
| 372 |
+
3. **Debridement**: Remove necrotic tissue if present (professional assessment required)
|
| 373 |
+
4. **Dressing Selection**: Choose appropriate dressing based on wound characteristics:
|
| 374 |
+
- Moisture level assessment
|
| 375 |
+
- Infection risk evaluation
|
| 376 |
+
- Patient comfort and mobility
|
| 377 |
+
|
| 378 |
+
### Monitoring Plan
|
| 379 |
+
- **Initial Phase**: Daily assessment for first week
|
| 380 |
+
- **Ongoing Care**: Reassessment every 2-3 days or as clinically indicated
|
| 381 |
+
- **Documentation**: Regular photo documentation and measurement tracking
|
| 382 |
+
- **Progress Evaluation**: Weekly review of healing progression
|
| 383 |
+
|
| 384 |
+
## ⚠️ Risk Factors & Considerations
|
| 385 |
+
|
| 386 |
+
### Patient-Specific Factors
|
| 387 |
+
Review patient history for factors that may impact healing:
|
| 388 |
+
- Age and general health status
|
| 389 |
+
- Diabetes or metabolic conditions
|
| 390 |
+
- Circulation and vascular health
|
| 391 |
+
- Nutritional status
|
| 392 |
+
- Mobility and pressure relief
|
| 393 |
+
|
| 394 |
+
### Warning Signs
|
| 395 |
+
Monitor for signs requiring immediate attention:
|
| 396 |
+
- Increased pain, redness, or swelling
|
| 397 |
+
- Purulent drainage or odor
|
| 398 |
+
- Fever or systemic signs of infection
|
| 399 |
+
- Wound expansion or deterioration
|
| 400 |
+
- Delayed healing beyond expected timeframe
|
| 401 |
+
|
| 402 |
+
## 📚 Clinical Guidelines Context
|
| 403 |
+
{guideline_context[:800]}{'...' if len(guideline_context) > 800 else ''}
|
| 404 |
|
| 405 |
## 🏥 Next Steps
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
|
| 407 |
+
### Immediate Actions
|
| 408 |
+
1. **Professional Consultation**: Schedule appointment with wound care specialist
|
| 409 |
+
2. **Baseline Documentation**: Establish comprehensive baseline assessment
|
| 410 |
+
3. **Treatment Plan**: Develop individualized care protocol
|
| 411 |
+
4. **Patient Education**: Provide wound care instructions and warning signs
|
| 412 |
+
|
| 413 |
+
### Follow-up Schedule
|
| 414 |
+
- **Week 1**: Daily monitoring and assessment
|
| 415 |
+
- **Week 2-4**: Every 2-3 days or as indicated
|
| 416 |
+
- **Monthly**: Comprehensive reassessment and plan review
|
| 417 |
+
- **As Needed**: Immediate evaluation for any concerning changes
|
| 418 |
+
|
| 419 |
+
## ⚖️ Important Medical Disclaimer
|
| 420 |
+
|
| 421 |
+
**This automated analysis is provided for informational and educational purposes only.**
|
| 422 |
+
|
| 423 |
+
- This report does not constitute medical diagnosis or treatment advice
|
| 424 |
+
- All measurements are computer-generated estimates requiring clinical verification
|
| 425 |
+
- Professional medical evaluation is essential for proper diagnosis and treatment
|
| 426 |
+
- This AI tool should supplement, not replace, clinical judgment
|
| 427 |
+
- Always consult qualified healthcare professionals for medical decisions
|
| 428 |
+
|
| 429 |
+
### Clinical Correlation Required
|
| 430 |
+
- Verify all measurements with standard clinical tools
|
| 431 |
+
- Correlate findings with patient symptoms and history
|
| 432 |
+
- Consider factors not captured in automated analysis
|
| 433 |
+
- Follow institutional protocols and guidelines
|
| 434 |
|
| 435 |
---
|
| 436 |
+
*Generated by SmartHeal AI - Advanced Wound Care Analysis System*
|
| 437 |
+
*Report Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}*
|
| 438 |
+
*Version: AI-Processor v1.2 with Enhanced Fallback Reporting*
|
| 439 |
"""
|
| 440 |
return report
|
| 441 |
|
|
|
|
| 474 |
return ""
|
| 475 |
|
| 476 |
def full_analysis_pipeline(self, image_pil: Image.Image, questionnaire_data: dict) -> dict:
|
| 477 |
+
"""Run full analysis pipeline."""
|
| 478 |
try:
|
| 479 |
# Save image first
|
| 480 |
saved_path = self.save_and_commit_image(image_pil)
|
|
|
|
| 484 |
visual_results = self.perform_visual_analysis(image_pil)
|
| 485 |
logging.info(f"Visual analysis completed: {visual_results}")
|
| 486 |
|
| 487 |
+
# Process questionnaire data
|
| 488 |
patient_info = f"Age: {questionnaire_data.get('age', 'N/A')}, Diabetic: {questionnaire_data.get('diabetic', 'N/A')}, Allergies: {questionnaire_data.get('allergies', 'N/A')}, Date of Wound Sustained: {questionnaire_data.get('date_of_injury', 'N/A')}, Professional Care: {questionnaire_data.get('professional_care', 'N/A')}, Oozing/Bleeding: {questionnaire_data.get('oozing_bleeding', 'N/A')}, Infection: {questionnaire_data.get('infection', 'N/A')}, Moisture: {questionnaire_data.get('moisture', 'N/A')}"
|
| 489 |
|
| 490 |
+
# Query guidelines
|
| 491 |
query = f"best practices for managing a {visual_results['wound_type']} with moisture level '{questionnaire_data.get('moisture', 'unknown')}' and signs of infection '{questionnaire_data.get('infection', 'unknown')}' in a patient who is diabetic '{questionnaire_data.get('diabetic', 'unknown')}'"
|
| 492 |
guideline_context = self.query_guidelines(query)
|
| 493 |
logging.info("Guidelines queried successfully")
|
|
|
|
| 542 |
'report': f"Analysis initialization failed: {str(e)}",
|
| 543 |
'saved_image_path': None,
|
| 544 |
'guideline_context': ""
|
| 545 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|