SmartHeal commited on
Commit
c609645
·
verified ·
1 Parent(s): 0e363c6

Update src/ai_processor.py

Browse files
Files changed (1) hide show
  1. src/ai_processor.py +156 -104
src/ai_processor.py CHANGED
@@ -285,7 +285,6 @@ def estimate_px_per_cm_from_exif(pil_img: Image.Image, default_px_per_cm: float
285
 
286
  # ---------- Segmentation helpers ----------
287
  def _imagenet_norm(arr: np.ndarray) -> np.ndarray:
288
- # expects RGB 0..255 -> float
289
  mean = np.array([123.675, 116.28, 103.53], dtype=np.float32)
290
  std = np.array([58.395, 57.12, 57.375], dtype=np.float32)
291
  return (arr.astype(np.float32) - mean) / std
@@ -309,112 +308,166 @@ def _to_prob(pred: np.ndarray) -> np.ndarray:
309
  p = 1.0 / (1.0 + np.exp(-p))
310
  return p.astype(np.float32)
311
 
312
- # ---- Robust mask post-processing (for "proper" masking) ----
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313
  def _fill_holes(mask01: np.ndarray) -> np.ndarray:
314
- # Flood-fill from border, then invert
315
  h, w = mask01.shape[:2]
316
  ff = np.zeros((h + 2, w + 2), np.uint8)
317
  m = (mask01 * 255).astype(np.uint8).copy()
318
  cv2.floodFill(m, ff, (0, 0), 255)
319
  m_inv = cv2.bitwise_not(m)
320
- # Combine original with filled holes
321
  out = ((mask01 * 255) | m_inv) // 255
322
  return out.astype(np.uint8)
323
 
324
- # Global last debug dict (per-process) to attach into results
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
325
  _last_seg_debug: Dict[str, object] = {}
326
 
327
  def segment_wound(image_bgr: np.ndarray, ts: str, out_dir: str) -> Tuple[np.ndarray, Dict[str, object]]:
328
  """
329
- Attempts TF segmentation first; falls back to KMeans if needed.
 
330
  Returns (mask_uint8_0_255, debug_dict)
331
  """
332
- global _last_seg_debug
333
- _last_seg_debug = {}
334
 
335
  seg_model = models_cache.get("seg", None)
336
- used = "fallback_kmeans"
337
- reason = "no_model"
338
- heatmap_path = None
339
- saw_roi_path = None
340
 
 
341
  if seg_model is not None:
342
  try:
343
  ishape = getattr(seg_model, "input_shape", None)
344
  if not ishape or len(ishape) < 4:
345
  raise ValueError(f"Bad seg input_shape: {ishape}")
346
  th, tw = int(ishape[1]), int(ishape[2])
 
347
  x = _preprocess_for_seg(image_bgr, (th, tw))
348
- saw_roi = (cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) if SEG_EXPECTS_RGB else image_bgr)
349
  if SMARTHEAL_DEBUG:
350
- saw_roi_path = os.path.join(out_dir, f"roi_for_seg_{ts}.png")
351
- cv2.imwrite(saw_roi_path, (cv2.cvtColor(saw_roi, cv2.COLOR_RGB2BGR) if SEG_EXPECTS_RGB else saw_roi))
352
 
353
- # Inference
354
  pred = seg_model.predict(x, verbose=0)
355
- if isinstance(pred, (list, tuple)):
356
- pred = pred[0]
357
- p = _to_prob(pred) # HxW
358
- p = cv2.resize(p, (image_bgr.shape[1], image_bgr.shape[0])) # back to ROI size
359
-
360
- # Debug stats
361
- pmin, pmax, pmean = float(p.min()), float(p.max()), float(p.mean())
362
- _log_kv("SEG_PROB_STATS", {"min": pmin, "max": pmax, "mean": pmean})
363
 
 
364
  if SMARTHEAL_DEBUG:
365
  hm = (np.clip(p, 0, 1) * 255).astype(np.uint8)
366
  heat = cv2.applyColorMap(hm, cv2.COLORMAP_JET)
367
  heatmap_path = os.path.join(out_dir, f"seg_pred_heatmap_{ts}.png")
368
  cv2.imwrite(heatmap_path, heat)
369
 
370
- # Threshold
371
- thr = SEG_THRESH
372
- mask = (p >= thr).astype(np.uint8) # 0/1
373
- pos = int(mask.sum())
374
- frac = pos / float(mask.size)
375
- logging.info(f"SegModel USED | thr={thr} pos_px={pos} pos_frac={frac:.4f} ex_rgb={SEG_EXPECTS_RGB} norm={SEG_NORM}")
376
-
377
- used = "tf_model"
378
- reason = "ok"
379
-
380
- _last_seg_debug = {
381
- "used": used,
382
- "reason": reason,
383
- "input_shape": ishape,
384
- "prob_min": pmin, "prob_max": pmax, "prob_mean": pmean,
385
- "threshold": thr,
386
- "positive_fraction": frac,
 
 
 
 
 
 
 
387
  "heatmap_path": heatmap_path,
388
- "roi_seen_by_model": saw_roi_path,
389
- }
390
- return (mask * 255).astype(np.uint8), _last_seg_debug
391
 
392
  except Exception as e:
393
- reason = f"model_failed: {e}"
394
- logging.warning(f"⚠️ Segmentation model prediction failed → fallback. Reason: {e}")
395
 
396
- # --- Fallback: KMeans (k=2), pick 'reddest' cluster in Lab a* ---
397
  Z = image_bgr.reshape((-1, 3)).astype(np.float32)
398
  criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
399
  _, labels, centers = cv2.kmeans(Z, 2, None, criteria, 5, cv2.KMEANS_PP_CENTERS)
400
  centers_u8 = centers.astype(np.uint8).reshape(1, 2, 3)
401
  centers_lab = cv2.cvtColor(centers_u8, cv2.COLOR_BGR2LAB)[0]
402
- wound_idx = int(np.argmax(centers_lab[:, 1])) # maximize a* (redness)
403
- mask = (labels.reshape(image_bgr.shape[:2]) == wound_idx).astype(np.uint8)
404
-
405
- pos = int(mask.sum()); frac = pos / float(mask.size)
406
- logging.info(f"KMeans USED | pos_px={pos} pos_frac={frac:.4f}")
407
-
408
- _last_seg_debug = {
409
- "used": used,
410
- "reason": reason,
411
- "kmeans_centers_bgr": centers.tolist(),
412
- "kmeans_centers_lab": centers_lab.astype(float).tolist(),
413
- "positive_fraction": frac,
414
- "heatmap_path": heatmap_path,
415
- "roi_seen_by_model": saw_roi_path,
416
- }
417
- return (mask * 255).astype(np.uint8), _last_seg_debug
418
 
419
  # ---------- Measurement + overlay helpers ----------
420
  def largest_component_mask(binary01: np.ndarray, min_area_px: int = 50) -> np.ndarray:
@@ -427,17 +480,6 @@ def largest_component_mask(binary01: np.ndarray, min_area_px: int = 50) -> np.nd
427
  largest_idx = 1 + int(np.argmax(areas))
428
  return (labels == largest_idx).astype(np.uint8)
429
 
430
- def _clean_mask(mask01: np.ndarray) -> np.ndarray:
431
- """Open→Close→Fill holes→Largest component."""
432
- if mask01.dtype != np.uint8:
433
- mask01 = mask01.astype(np.uint8)
434
- k = np.ones((3, 3), np.uint8)
435
- mask01 = cv2.morphologyEx(mask01, cv2.MORPH_OPEN, k, iterations=1)
436
- mask01 = cv2.morphologyEx(mask01, cv2.MORPH_CLOSE, k, iterations=2)
437
- mask01 = _fill_holes(mask01)
438
- mask01 = largest_component_mask(mask01, min_area_px=30)
439
- return (mask01 > 0).astype(np.uint8)
440
-
441
  def measure_min_area_rect(mask01: np.ndarray, px_per_cm: float) -> Tuple[float, float, Tuple]:
442
  contours, _ = cv2.findContours(mask01.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
443
  if not contours:
@@ -451,9 +493,23 @@ def measure_min_area_rect(mask01: np.ndarray, px_per_cm: float) -> Tuple[float,
451
  box = cv2.boxPoints(rect).astype(int)
452
  return length_cm, breadth_cm, (box, rect[0])
453
 
454
- def count_area_cm2(mask01: np.ndarray, px_per_cm: float) -> float:
455
- px_count = float(mask01.astype(bool).sum())
456
- return round(px_count / (max(px_per_cm, 1e-6) ** 2), 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457
 
458
  def draw_measurement_overlay(
459
  base_bgr: np.ndarray,
@@ -464,16 +520,13 @@ def draw_measurement_overlay(
464
  thickness: int = 2
465
  ) -> np.ndarray:
466
  """
467
- Draws:
468
- 1) Strong red mask overlay with white contour.
469
- 2) Min-area rectangle.
470
- 3) Two double-headed arrows:
471
- - 'Length' along the longer side.
472
- - 'Width' along the shorter side.
473
  """
474
  overlay = base_bgr.copy()
475
 
476
- # --- Strong overlay from mask (tinted red where mask==1) ---
477
  mask255 = (mask01 * 255).astype(np.uint8)
478
  mask3 = cv2.merge([mask255, mask255, mask255])
479
  red = np.zeros_like(overlay); red[:] = (0, 0, 255)
@@ -481,7 +534,7 @@ def draw_measurement_overlay(
481
  tinted = cv2.addWeighted(overlay, 1 - alpha, red, alpha, 0)
482
  overlay = np.where(mask3 > 0, tinted, overlay)
483
 
484
- # Draw wound contour
485
  cnts, _ = cv2.findContours(mask255, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
486
  if cnts:
487
  cv2.drawContours(overlay, cnts, -1, (255, 255, 255), 2)
@@ -490,19 +543,11 @@ def draw_measurement_overlay(
490
  cv2.polylines(overlay, [rect_box], True, (255, 255, 255), thickness)
491
  pts = rect_box.reshape(-1, 2)
492
 
493
- def midpoint(a, b):
494
- return (int((a[0] + b[0]) / 2), int((a[1] + b[1]) / 2))
495
-
496
- # Edge lengths
497
  e = [np.linalg.norm(pts[i] - pts[(i + 1) % 4]) for i in range(4)]
498
  long_edge_idx = int(np.argmax(e))
499
- short_edge_idx = (long_edge_idx + 1) % 2 # 0/1 map for pairs below
500
-
501
- # Midpoints of opposite edges for arrows
502
  mids = [midpoint(pts[i], pts[(i + 1) % 4]) for i in range(4)]
503
- # Long side uses edges long_edge_idx and the opposite edge (i+2)
504
  long_pair = (long_edge_idx, (long_edge_idx + 2) % 4)
505
- # Short side uses the other pair
506
  short_pair = ((long_edge_idx + 1) % 4, (long_edge_idx + 3) % 4)
507
 
508
  def draw_double_arrow(img, p1, p2):
@@ -516,7 +561,6 @@ def draw_measurement_overlay(
516
  cv2.putText(overlay, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 4, cv2.LINE_AA)
517
  cv2.putText(overlay, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
518
 
519
- # Draw arrows and labels
520
  draw_double_arrow(overlay, mids[long_pair[0]], mids[long_pair[1]])
521
  draw_double_arrow(overlay, mids[short_pair[0]], mids[short_pair[1]])
522
  put_label(f"Length: {length_cm:.2f} cm", mids[long_pair[0]])
@@ -545,6 +589,11 @@ class AIProcessor:
545
  """
546
  try:
547
  px_per_cm, exif_meta = estimate_px_per_cm_from_exif(image_pil, DEFAULT_PX_PER_CM)
 
 
 
 
 
548
  image_cv = cv2.cvtColor(np.array(image_pil.convert("RGB")), cv2.COLOR_RGB2BGR)
549
 
550
  # --- Detection ---
@@ -578,20 +627,23 @@ class AIProcessor:
578
  mask_u8_255, seg_debug = segment_wound(roi, ts, out_dir)
579
  mask01 = (mask_u8_255 > 127).astype(np.uint8)
580
 
581
- # Robust post-processing to ensure "proper" masking
582
  if mask01.any():
583
  mask01 = _clean_mask(mask01)
584
  logging.debug(f"Mask postproc: px_after={int(mask01.sum())}")
585
 
586
- # --- Measurement ---
587
  if mask01.any():
588
  length_cm, breadth_cm, (box_pts, _) = measure_min_area_rect(mask01, px_per_cm)
589
- surface_area_cm2 = count_area_cm2(mask01, px_per_cm)
590
- # Final annotated ROI with mask + arrows + labels
 
 
 
 
591
  anno_roi = draw_measurement_overlay(roi, mask01, box_pts, length_cm, breadth_cm)
592
  segmentation_empty = False
593
  else:
594
- # Graceful fallback if seg failed: use ROI box as bounds
595
  h_px = max(0, y2 - y1); w_px = max(0, x2 - x1)
596
  length_cm = round(max(h_px, w_px) / px_per_cm, 2)
597
  breadth_cm = round(min(h_px, w_px) / px_per_cm, 2)
@@ -615,7 +667,7 @@ class AIProcessor:
615
  roi_mask_path = os.path.join(out_dir, f"roi_mask_{ts}.png")
616
  cv2.imwrite(roi_mask_path, (mask01 * 255).astype(np.uint8))
617
 
618
- # ROI overlay (clear mask w/ white contour, no arrows)
619
  mask255 = (mask01 * 255).astype(np.uint8)
620
  mask3 = cv2.merge([mask255, mask255, mask255])
621
  red = np.zeros_like(roi); red[:] = (0, 0, 255)
@@ -658,7 +710,7 @@ class AIProcessor:
658
  "seg_used": seg_debug.get("used"),
659
  "seg_reason": seg_debug.get("reason"),
660
  "positive_fraction": round(float(seg_debug.get("positive_fraction", 0.0)), 6),
661
- "threshold": seg_debug.get("threshold", SEG_THRESH),
662
  "segmentation_empty": segmentation_empty,
663
  "exif_px_per_cm": round(px_per_cm, 3),
664
  }
@@ -674,7 +726,7 @@ class AIProcessor:
674
  "detection_confidence": float(results[0].boxes.conf[0].cpu().item())
675
  if getattr(results[0].boxes, "conf", None) is not None else 0.0,
676
  "detection_image_path": detection_path,
677
- "segmentation_image_path": segmentation_path,
678
  "segmentation_annotated_path": annotated_seg_path,
679
  "segmentation_roi_path": segmentation_roi_path,
680
  "roi_mask_path": roi_mask_path,
@@ -857,4 +909,4 @@ Automated analysis provides quantitative measurements; verify via clinical exami
857
  "report": f"Analysis initialization failed: {str(e)}",
858
  "saved_image_path": None,
859
  "guideline_context": "",
860
- }
 
285
 
286
  # ---------- Segmentation helpers ----------
287
  def _imagenet_norm(arr: np.ndarray) -> np.ndarray:
 
288
  mean = np.array([123.675, 116.28, 103.53], dtype=np.float32)
289
  std = np.array([58.395, 57.12, 57.375], dtype=np.float32)
290
  return (arr.astype(np.float32) - mean) / std
 
308
  p = 1.0 / (1.0 + np.exp(-p))
309
  return p.astype(np.float32)
310
 
311
+ # ---- Adaptive threshold + GrabCut grow ----
312
+ def _adaptive_prob_threshold(p: np.ndarray) -> float:
313
+ """
314
+ Choose a threshold that avoids tiny blobs while not swallowing skin.
315
+ Try Otsu and the 90th percentile, clamp to [0.25, 0.65], pick by area heuristic.
316
+ """
317
+ p01 = np.clip(p.astype(np.float32), 0, 1)
318
+ p255 = (p01 * 255).astype(np.uint8)
319
+
320
+ ret_otsu, _ = cv2.threshold(p255, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
321
+ thr_otsu = float(np.clip(ret_otsu / 255.0, 0.25, 0.65))
322
+ thr_pctl = float(np.clip(np.percentile(p01, 90), 0.25, 0.65))
323
+
324
+ def area_frac(thr: float) -> float:
325
+ return float((p01 >= thr).sum()) / float(p01.size)
326
+
327
+ af_otsu = area_frac(thr_otsu)
328
+ af_pctl = area_frac(thr_pctl)
329
+
330
+ def score(af: float) -> float:
331
+ target_low, target_high = 0.03, 0.10
332
+ if af < target_low: return abs(af - target_low) * 3.0
333
+ if af > target_high: return abs(af - target_high) * 1.5
334
+ return 0.0
335
+
336
+ return thr_otsu if score(af_otsu) <= score(af_pctl) else thr_pctl
337
+
338
+ def _grabcut_refine(bgr: np.ndarray, seed01: np.ndarray, iters: int = 3) -> np.ndarray:
339
+ """Grow from a confident core into low-contrast margins."""
340
+ h, w = bgr.shape[:2]
341
+ gc = np.full((h, w), cv2.GC_PR_BGD, np.uint8)
342
+ k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
343
+ seed_dil = cv2.dilate(seed01, k, iterations=1)
344
+ gc[seed01.astype(bool)] = cv2.GC_PR_FGD
345
+ gc[seed_dil.astype(bool)] = cv2.GC_FGD
346
+ gc[0, :], gc[-1, :], gc[:, 0], gc[:, -1] = cv2.GC_BGD, cv2.GC_BGD, cv2.GC_BGD, cv2.GC_BGD
347
+ bgdModel = np.zeros((1, 65), np.float64)
348
+ fgdModel = np.zeros((1, 65), np.float64)
349
+ cv2.grabCut(bgr, gc, None, bgdModel, fgdModel, iters, cv2.GC_INIT_WITH_MASK)
350
+ return np.where((gc == cv2.GC_FGD) | (gc == cv2.GC_PR_FGD), 1, 0).astype(np.uint8)
351
+
352
  def _fill_holes(mask01: np.ndarray) -> np.ndarray:
 
353
  h, w = mask01.shape[:2]
354
  ff = np.zeros((h + 2, w + 2), np.uint8)
355
  m = (mask01 * 255).astype(np.uint8).copy()
356
  cv2.floodFill(m, ff, (0, 0), 255)
357
  m_inv = cv2.bitwise_not(m)
 
358
  out = ((mask01 * 255) | m_inv) // 255
359
  return out.astype(np.uint8)
360
 
361
+ def _clean_mask(mask01: np.ndarray) -> np.ndarray:
362
+ """Open → Close → Fill holes → Largest component (no dilation)."""
363
+ mask01 = (mask01 > 0).astype(np.uint8)
364
+ k3 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
365
+ k5 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
366
+ mask01 = cv2.morphologyEx(mask01, cv2.MORPH_OPEN, k3, iterations=1)
367
+ mask01 = cv2.morphologyEx(mask01, cv2.MORPH_CLOSE, k5, iterations=1)
368
+ mask01 = _fill_holes(mask01)
369
+ # Keep largest component only
370
+ num, labels, stats, _ = cv2.connectedComponentsWithStats(mask01, 8)
371
+ if num > 1:
372
+ areas = stats[1:, cv2.CC_STAT_AREA]
373
+ if areas.size:
374
+ largest_idx = 1 + int(np.argmax(areas))
375
+ mask01 = (labels == largest_idx).astype(np.uint8)
376
+ return (mask01 > 0).astype(np.uint8)
377
+
378
+ # Global last debug dict (per-process)
379
  _last_seg_debug: Dict[str, object] = {}
380
 
381
  def segment_wound(image_bgr: np.ndarray, ts: str, out_dir: str) -> Tuple[np.ndarray, Dict[str, object]]:
382
  """
383
+ TF model adaptive threshold on prob GrabCut grow → cleanup.
384
+ Fallback: KMeans-Lab.
385
  Returns (mask_uint8_0_255, debug_dict)
386
  """
387
+ debug = {"used": None, "reason": None, "positive_fraction": 0.0,
388
+ "thr": None, "heatmap_path": None, "roi_seen_by_model": None}
389
 
390
  seg_model = models_cache.get("seg", None)
 
 
 
 
391
 
392
+ # --- Model path ---
393
  if seg_model is not None:
394
  try:
395
  ishape = getattr(seg_model, "input_shape", None)
396
  if not ishape or len(ishape) < 4:
397
  raise ValueError(f"Bad seg input_shape: {ishape}")
398
  th, tw = int(ishape[1]), int(ishape[2])
399
+
400
  x = _preprocess_for_seg(image_bgr, (th, tw))
401
+ roi_seen_path = None
402
  if SMARTHEAL_DEBUG:
403
+ roi_seen_path = os.path.join(out_dir, f"roi_for_seg_{ts}.png")
404
+ cv2.imwrite(roi_seen_path, image_bgr)
405
 
 
406
  pred = seg_model.predict(x, verbose=0)
407
+ if isinstance(pred, (list, tuple)): pred = pred[0]
408
+ p = _to_prob(pred)
409
+ p = cv2.resize(p, (image_bgr.shape[1], image_bgr.shape[0]), interpolation=cv2.INTER_LINEAR)
 
 
 
 
 
410
 
411
+ heatmap_path = None
412
  if SMARTHEAL_DEBUG:
413
  hm = (np.clip(p, 0, 1) * 255).astype(np.uint8)
414
  heat = cv2.applyColorMap(hm, cv2.COLORMAP_JET)
415
  heatmap_path = os.path.join(out_dir, f"seg_pred_heatmap_{ts}.png")
416
  cv2.imwrite(heatmap_path, heat)
417
 
418
+ thr = _adaptive_prob_threshold(p)
419
+ core01 = (p >= thr).astype(np.uint8)
420
+ core_frac = float(core01.sum()) / float(core01.size)
421
+
422
+ if core_frac < 0.005:
423
+ thr2 = max(thr - 0.10, 0.15)
424
+ core01 = (p >= thr2).astype(np.uint8)
425
+ thr = thr2
426
+ core_frac = float(core01.sum()) / float(core01.size)
427
+
428
+ if core01.any():
429
+ gc01 = _grabcut_refine(image_bgr, core01, iters=3)
430
+ mask01 = _clean_mask(gc01)
431
+ else:
432
+ mask01 = np.zeros(core01.shape, np.uint8)
433
+
434
+ pos_frac = float(mask01.sum()) / float(mask01.size)
435
+ logging.info(f"SegModel USED | thr={float(thr):.2f} core_frac={core_frac:.4f} final_frac={pos_frac:.4f}")
436
+
437
+ debug.update({
438
+ "used": "tf_model",
439
+ "reason": "ok",
440
+ "positive_fraction": pos_frac,
441
+ "thr": float(thr),
442
  "heatmap_path": heatmap_path,
443
+ "roi_seen_by_model": roi_seen_path
444
+ })
445
+ return (mask01 * 255).astype(np.uint8), debug
446
 
447
  except Exception as e:
448
+ logging.warning(f"⚠️ Segmentation model failed → fallback. Reason: {e}")
449
+ debug.update({"used": "fallback_kmeans", "reason": f"model_failed: {e}"})
450
 
451
+ # --- Fallback: KMeans in Lab (reddest cluster as wound) ---
452
  Z = image_bgr.reshape((-1, 3)).astype(np.float32)
453
  criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
454
  _, labels, centers = cv2.kmeans(Z, 2, None, criteria, 5, cv2.KMEANS_PP_CENTERS)
455
  centers_u8 = centers.astype(np.uint8).reshape(1, 2, 3)
456
  centers_lab = cv2.cvtColor(centers_u8, cv2.COLOR_BGR2LAB)[0]
457
+ wound_idx = int(np.argmax(centers_lab[:, 1])) # maximize a* (red)
458
+ mask01 = (labels.reshape(image_bgr.shape[:2]) == wound_idx).astype(np.uint8)
459
+ mask01 = _clean_mask(mask01)
460
+
461
+ pos_frac = float(mask01.sum()) / float(mask01.size)
462
+ logging.info(f"KMeans USED | final_frac={pos_frac:.4f}")
463
+
464
+ debug.update({
465
+ "used": "fallback_kmeans",
466
+ "reason": debug.get("reason") or "no_model",
467
+ "positive_fraction": pos_frac,
468
+ "thr": None
469
+ })
470
+ return (mask01 * 255).astype(np.uint8), debug
 
 
471
 
472
  # ---------- Measurement + overlay helpers ----------
473
  def largest_component_mask(binary01: np.ndarray, min_area_px: int = 50) -> np.ndarray:
 
480
  largest_idx = 1 + int(np.argmax(areas))
481
  return (labels == largest_idx).astype(np.uint8)
482
 
 
 
 
 
 
 
 
 
 
 
 
483
  def measure_min_area_rect(mask01: np.ndarray, px_per_cm: float) -> Tuple[float, float, Tuple]:
484
  contours, _ = cv2.findContours(mask01.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
485
  if not contours:
 
493
  box = cv2.boxPoints(rect).astype(int)
494
  return length_cm, breadth_cm, (box, rect[0])
495
 
496
+ def area_cm2_from_contour(mask01: np.ndarray, px_per_cm: float) -> Tuple[float, Optional[np.ndarray]]:
497
+ """Area from largest polygon (sub-pixel); returns (area_cm2, contour)."""
498
+ m = (mask01 > 0).astype(np.uint8)
499
+ contours, _ = cv2.findContours(m, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
500
+ if not contours:
501
+ return 0.0, None
502
+ cnt = max(contours, key=cv2.contourArea)
503
+ poly_area_px2 = float(cv2.contourArea(cnt))
504
+ area_cm2 = round(poly_area_px2 / (max(px_per_cm, 1e-6) ** 2), 2)
505
+ return area_cm2, cnt
506
+
507
+ def clamp_area_with_minrect(cnt: np.ndarray, px_per_cm: float, area_cm2_poly: float) -> float:
508
+ rect = cv2.minAreaRect(cnt)
509
+ (w_px, h_px) = rect[1]
510
+ rect_area_px2 = float(max(w_px, 0.0) * max(h_px, 0.0))
511
+ rect_area_cm2 = rect_area_px2 / (max(px_per_cm, 1e-6) ** 2)
512
+ return round(min(area_cm2_poly, rect_area_cm2 * 1.05), 2)
513
 
514
  def draw_measurement_overlay(
515
  base_bgr: np.ndarray,
 
520
  thickness: int = 2
521
  ) -> np.ndarray:
522
  """
523
+ 1) Strong red mask overlay + white contour
524
+ 2) Min-area rectangle
525
+ 3) Double-headed arrows labeled Length/Width
 
 
 
526
  """
527
  overlay = base_bgr.copy()
528
 
529
+ # Mask tint
530
  mask255 = (mask01 * 255).astype(np.uint8)
531
  mask3 = cv2.merge([mask255, mask255, mask255])
532
  red = np.zeros_like(overlay); red[:] = (0, 0, 255)
 
534
  tinted = cv2.addWeighted(overlay, 1 - alpha, red, alpha, 0)
535
  overlay = np.where(mask3 > 0, tinted, overlay)
536
 
537
+ # Contour
538
  cnts, _ = cv2.findContours(mask255, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
539
  if cnts:
540
  cv2.drawContours(overlay, cnts, -1, (255, 255, 255), 2)
 
543
  cv2.polylines(overlay, [rect_box], True, (255, 255, 255), thickness)
544
  pts = rect_box.reshape(-1, 2)
545
 
546
+ def midpoint(a, b): return (int((a[0] + b[0]) / 2), int((a[1] + b[1]) / 2))
 
 
 
547
  e = [np.linalg.norm(pts[i] - pts[(i + 1) % 4]) for i in range(4)]
548
  long_edge_idx = int(np.argmax(e))
 
 
 
549
  mids = [midpoint(pts[i], pts[(i + 1) % 4]) for i in range(4)]
 
550
  long_pair = (long_edge_idx, (long_edge_idx + 2) % 4)
 
551
  short_pair = ((long_edge_idx + 1) % 4, (long_edge_idx + 3) % 4)
552
 
553
  def draw_double_arrow(img, p1, p2):
 
561
  cv2.putText(overlay, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 0), 4, cv2.LINE_AA)
562
  cv2.putText(overlay, text, org, cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
563
 
 
564
  draw_double_arrow(overlay, mids[long_pair[0]], mids[long_pair[1]])
565
  draw_double_arrow(overlay, mids[short_pair[0]], mids[short_pair[1]])
566
  put_label(f"Length: {length_cm:.2f} cm", mids[long_pair[0]])
 
589
  """
590
  try:
591
  px_per_cm, exif_meta = estimate_px_per_cm_from_exif(image_pil, DEFAULT_PX_PER_CM)
592
+ # Guardrails for calibration to avoid huge area blow-ups
593
+ px_per_cm = float(np.clip(px_per_cm, 20.0, 350.0))
594
+ if (exif_meta or {}).get("used") != "exif":
595
+ logging.warning(f"Calibration fallback used: px_per_cm={px_per_cm:.2f} (default). Prefer ruler/Aruco for accuracy.")
596
+
597
  image_cv = cv2.cvtColor(np.array(image_pil.convert("RGB")), cv2.COLOR_RGB2BGR)
598
 
599
  # --- Detection ---
 
627
  mask_u8_255, seg_debug = segment_wound(roi, ts, out_dir)
628
  mask01 = (mask_u8_255 > 127).astype(np.uint8)
629
 
 
630
  if mask01.any():
631
  mask01 = _clean_mask(mask01)
632
  logging.debug(f"Mask postproc: px_after={int(mask01.sum())}")
633
 
634
+ # --- Measurement (accurate & conservative) ---
635
  if mask01.any():
636
  length_cm, breadth_cm, (box_pts, _) = measure_min_area_rect(mask01, px_per_cm)
637
+ area_poly_cm2, largest_cnt = area_cm2_from_contour(mask01, px_per_cm)
638
+ if largest_cnt is not None:
639
+ surface_area_cm2 = clamp_area_with_minrect(largest_cnt, px_per_cm, area_poly_cm2)
640
+ else:
641
+ surface_area_cm2 = area_poly_cm2
642
+
643
  anno_roi = draw_measurement_overlay(roi, mask01, box_pts, length_cm, breadth_cm)
644
  segmentation_empty = False
645
  else:
646
+ # Fallback if seg failed: use ROI dimensions
647
  h_px = max(0, y2 - y1); w_px = max(0, x2 - x1)
648
  length_cm = round(max(h_px, w_px) / px_per_cm, 2)
649
  breadth_cm = round(min(h_px, w_px) / px_per_cm, 2)
 
667
  roi_mask_path = os.path.join(out_dir, f"roi_mask_{ts}.png")
668
  cv2.imwrite(roi_mask_path, (mask01 * 255).astype(np.uint8))
669
 
670
+ # ROI overlay (mask tint + contour, without arrows)
671
  mask255 = (mask01 * 255).astype(np.uint8)
672
  mask3 = cv2.merge([mask255, mask255, mask255])
673
  red = np.zeros_like(roi); red[:] = (0, 0, 255)
 
710
  "seg_used": seg_debug.get("used"),
711
  "seg_reason": seg_debug.get("reason"),
712
  "positive_fraction": round(float(seg_debug.get("positive_fraction", 0.0)), 6),
713
+ "threshold": seg_debug.get("thr"),
714
  "segmentation_empty": segmentation_empty,
715
  "exif_px_per_cm": round(px_per_cm, 3),
716
  }
 
726
  "detection_confidence": float(results[0].boxes.conf[0].cpu().item())
727
  if getattr(results[0].boxes, "conf", None) is not None else 0.0,
728
  "detection_image_path": detection_path,
729
+ "segmentation_image_path": annotated_seg_path,
730
  "segmentation_annotated_path": annotated_seg_path,
731
  "segmentation_roi_path": segmentation_roi_path,
732
  "roi_mask_path": roi_mask_path,
 
909
  "report": f"Analysis initialization failed: {str(e)}",
910
  "saved_image_path": None,
911
  "guideline_context": "",
912
+ }