Spaces:
Running
Running
Update src/ai_processor.py
Browse files- src/ai_processor.py +125 -101
src/ai_processor.py
CHANGED
|
@@ -17,7 +17,6 @@ import spaces
|
|
| 17 |
from .config import Config
|
| 18 |
import os
|
| 19 |
|
| 20 |
-
# Inline system prompt for MedGemma GPU pipeline
|
| 21 |
default_system_prompt = (
|
| 22 |
"You are a world-class medical AI assistant specializing in wound care "
|
| 23 |
"with expertise in wound assessment and treatment. Provide concise, "
|
|
@@ -40,21 +39,31 @@ class AIProcessor:
|
|
| 40 |
|
| 41 |
def _initialize_models(self):
|
| 42 |
"""Initialize CPU-only AI models; MedGemma is loaded on demand within GPU context."""
|
| 43 |
-
# Set
|
| 44 |
if self.config.HF_TOKEN:
|
| 45 |
HfFolder.save_token(self.config.HF_TOKEN)
|
| 46 |
logging.info("HuggingFace token set successfully")
|
| 47 |
|
| 48 |
-
# YOLO detection on CPU (force CPU
|
| 49 |
try:
|
| 50 |
-
self.models_cache['det'] = YOLO(
|
|
|
|
|
|
|
|
|
|
| 51 |
logging.info("✅ YOLO detection model loaded on CPU")
|
| 52 |
except Exception as e:
|
| 53 |
-
logging.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
# Segmentation model on CPU
|
| 56 |
try:
|
| 57 |
-
self.models_cache['seg'] = load_model(
|
|
|
|
|
|
|
|
|
|
| 58 |
logging.info("✅ Segmentation model loaded on CPU")
|
| 59 |
except Exception as e:
|
| 60 |
logging.warning(f"Segmentation model not available: {e}")
|
|
@@ -71,7 +80,7 @@ class AIProcessor:
|
|
| 71 |
except Exception as e:
|
| 72 |
logging.warning(f"Wound classification model not available: {e}")
|
| 73 |
|
| 74 |
-
#
|
| 75 |
try:
|
| 76 |
self.models_cache['embedding_model'] = HuggingFaceEmbeddings(
|
| 77 |
model_name='sentence-transformers/all-MiniLM-L6-v2',
|
|
@@ -81,11 +90,10 @@ class AIProcessor:
|
|
| 81 |
except Exception as e:
|
| 82 |
logging.warning(f"Embedding model not available: {e}")
|
| 83 |
|
| 84 |
-
# Load
|
| 85 |
self._load_knowledge_base()
|
| 86 |
|
| 87 |
def _load_knowledge_base(self):
|
| 88 |
-
"""Load PDF guidelines into a FAISS vector store."""
|
| 89 |
docs = []
|
| 90 |
for pdf in self.config.GUIDELINE_PDFS:
|
| 91 |
if os.path.exists(pdf):
|
|
@@ -94,92 +102,132 @@ class AIProcessor:
|
|
| 94 |
logging.info(f"Loaded PDF: {pdf}")
|
| 95 |
|
| 96 |
if docs and 'embedding_model' in self.models_cache:
|
| 97 |
-
splitter = RecursiveCharacterTextSplitter(
|
|
|
|
|
|
|
| 98 |
chunks = splitter.split_documents(docs)
|
| 99 |
-
vs = FAISS.from_documents(
|
|
|
|
|
|
|
| 100 |
self.knowledge_base_cache['vectorstore'] = vs
|
| 101 |
logging.info(f"✅ Knowledge base loaded ({len(chunks)} chunks)")
|
| 102 |
else:
|
| 103 |
self.knowledge_base_cache['vectorstore'] = None
|
| 104 |
logging.warning("Knowledge base unavailable")
|
| 105 |
|
| 106 |
-
|
| 107 |
def perform_visual_analysis(self, image_pil):
|
| 108 |
"""Detect & segment on CPU; return only paths + metrics."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
try:
|
| 110 |
-
img_cv = cv2.cvtColor(
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
| 113 |
if not res.boxes:
|
| 114 |
raise ValueError("No wound detected")
|
|
|
|
| 115 |
# Bounding box
|
| 116 |
x1, y1, x2, y2 = res.boxes.xyxy[0].cpu().numpy().astype(int)
|
| 117 |
region = img_cv[y1:y2, x1:x2]
|
|
|
|
| 118 |
# Save detection overlay
|
| 119 |
det_vis = img_cv.copy()
|
| 120 |
-
cv2.rectangle(det_vis, (x1, y1), (x2, y2), (0,255,0), 2)
|
| 121 |
os.makedirs(f"{self.config.UPLOADS_DIR}/analysis", exist_ok=True)
|
| 122 |
ts = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 123 |
-
det_path =
|
|
|
|
|
|
|
| 124 |
cv2.imwrite(det_path, det_vis)
|
|
|
|
| 125 |
# Initialize metrics & seg
|
| 126 |
length = breadth = area = 0
|
| 127 |
seg_path = None
|
| 128 |
-
|
|
|
|
| 129 |
if 'seg' in self.models_cache:
|
| 130 |
h, w = self.models_cache['seg'].input_shape[1:3]
|
| 131 |
-
inp = cv2.resize(region, (w,h)) / 255.0
|
| 132 |
-
mask = (
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
ov = region.copy()
|
| 135 |
-
ov[mask_rs==1] = [0,0,255]
|
| 136 |
-
seg_vis = cv2.addWeighted(region,0.7,ov,0.3,0)
|
| 137 |
-
seg_path =
|
|
|
|
|
|
|
| 138 |
cv2.imwrite(seg_path, seg_vis)
|
| 139 |
-
|
| 140 |
-
cnts, _ = cv2.findContours(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
if cnts:
|
| 142 |
cnt = max(cnts, key=cv2.contourArea)
|
| 143 |
-
_,_,w0,h0 = cv2.boundingRect(cnt)
|
| 144 |
-
length = round(h0/self.px_per_cm,2)
|
| 145 |
-
breadth= round(w0/self.px_per_cm,2)
|
| 146 |
-
area
|
|
|
|
|
|
|
|
|
|
| 147 |
# Classification
|
| 148 |
wound_type = 'Unknown'
|
| 149 |
if 'cls' in self.models_cache:
|
| 150 |
try:
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
| 153 |
except Exception:
|
| 154 |
pass
|
|
|
|
| 155 |
return {
|
| 156 |
'wound_type': wound_type,
|
| 157 |
'length_cm': length,
|
| 158 |
'breadth_cm': breadth,
|
| 159 |
'surface_area_cm2': area,
|
| 160 |
-
'detection_confidence': float(
|
|
|
|
|
|
|
| 161 |
'detection_image_path': det_path,
|
| 162 |
'segmentation_image_path': seg_path
|
| 163 |
}
|
|
|
|
| 164 |
except Exception as e:
|
| 165 |
logging.error(f"Visual analysis error: {e}")
|
| 166 |
raise
|
| 167 |
|
| 168 |
def query_guidelines(self, query: str):
|
| 169 |
-
"""Retrieve clinical guidelines from vectorstore."""
|
| 170 |
vs = self.knowledge_base_cache.get('vectorstore')
|
| 171 |
if not vs:
|
| 172 |
return "Clinical guidelines unavailable"
|
| 173 |
docs = vs.as_retriever(search_kwargs={'k':10}).invoke(query)
|
| 174 |
return '\n\n'.join(
|
| 175 |
-
f"Source: {d.metadata.get('source','?')}, Page: {d.metadata.get('page','?')}\n
|
|
|
|
| 176 |
for d in docs
|
| 177 |
)
|
| 178 |
|
| 179 |
@spaces.GPU(enable_queue=True, duration=120)
|
| 180 |
-
def generate_final_report(
|
|
|
|
|
|
|
| 181 |
"""Run MedGemma on GPU; return markdown report."""
|
| 182 |
-
# lazy-load MedGemma pipeline here to avoid CUDA init in main process
|
| 183 |
if 'medgemma_pipe' not in self.models_cache:
|
| 184 |
try:
|
| 185 |
self.models_cache['medgemma_pipe'] = pipeline(
|
|
@@ -193,22 +241,26 @@ class AIProcessor:
|
|
| 193 |
logging.info("✅ MedGemma pipeline loaded on GPU")
|
| 194 |
except Exception as e:
|
| 195 |
logging.warning(f"MedGemma pipeline not available: {e}")
|
| 196 |
-
return self._generate_fallback_report(
|
|
|
|
|
|
|
| 197 |
|
| 198 |
-
# build messages
|
| 199 |
msgs = [
|
| 200 |
{'role':'system','content':[{'type':'text','text':default_system_prompt}]},
|
| 201 |
{'role':'user','content':[]}
|
| 202 |
]
|
| 203 |
-
# images
|
| 204 |
if image_pil:
|
| 205 |
msgs[1]['content'].append({'type':'image','image':image_pil})
|
| 206 |
for key in ('detection_image_path','segmentation_image_path'):
|
| 207 |
p = visual_results.get(key)
|
| 208 |
if p and os.path.exists(p):
|
| 209 |
-
msgs[1]['content'].append(
|
| 210 |
-
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
msgs[1]['content'].append({'type':'text','text':prompt})
|
| 213 |
|
| 214 |
out = self.models_cache['medgemma_pipe'](
|
|
@@ -222,7 +274,6 @@ class AIProcessor:
|
|
| 222 |
)
|
| 223 |
|
| 224 |
def _generate_fallback_report(self, patient_info, visual_results, guideline_context):
|
| 225 |
-
"""Produce text-only fallback."""
|
| 226 |
dp = visual_results.get('detection_image_path','N/A')
|
| 227 |
sp = visual_results.get('segmentation_image_path','N/A')
|
| 228 |
return (
|
|
@@ -234,12 +285,11 @@ class AIProcessor:
|
|
| 234 |
)
|
| 235 |
|
| 236 |
def save_and_commit_image(self, image_pil):
|
| 237 |
-
"""Save locally and optionally to HuggingFace."""
|
| 238 |
os.makedirs(self.config.UPLOADS_DIR, exist_ok=True)
|
| 239 |
fn = f"{datetime.now():%Y%m%d_%H%M%S}.png"
|
| 240 |
path = os.path.join(self.config.UPLOADS_DIR, fn)
|
| 241 |
image_pil.convert('RGB').save(path)
|
| 242 |
-
if self.config.HF_TOKEN and
|
| 243 |
try:
|
| 244 |
api = HfApi()
|
| 245 |
api.upload_file(
|
|
@@ -253,77 +303,51 @@ class AIProcessor:
|
|
| 253 |
return path
|
| 254 |
|
| 255 |
def full_analysis_pipeline(self, image_pil, questionnaire_data):
|
| 256 |
-
"""Orchestrate CPU steps + GPU report."""
|
| 257 |
try:
|
| 258 |
saved = self.save_and_commit_image(image_pil)
|
| 259 |
vis = self.perform_visual_analysis(image_pil)
|
| 260 |
-
info = ", ".join(
|
|
|
|
|
|
|
| 261 |
gc = self.query_guidelines(info)
|
| 262 |
report = self.generate_final_report(info, vis, gc, image_pil)
|
| 263 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
except Exception as e:
|
| 265 |
logging.error(f"Pipeline error: {e}")
|
| 266 |
-
return {'success':False,'error':str(e)}
|
| 267 |
|
| 268 |
def analyze_wound(self, image, questionnaire_data):
|
| 269 |
-
|
| 270 |
-
if isinstance(image,str):
|
| 271 |
image = Image.open(image)
|
| 272 |
return self.full_analysis_pipeline(image, questionnaire_data)
|
| 273 |
|
| 274 |
def _assess_risk_legacy(self, questionnaire_data):
|
| 275 |
-
|
| 276 |
-
risk_factors = []
|
| 277 |
-
risk_score = 0
|
| 278 |
-
|
| 279 |
try:
|
| 280 |
-
# Age factor
|
| 281 |
age = questionnaire_data.get('patient_age', 0)
|
| 282 |
if age > 65:
|
| 283 |
-
risk_factors.append("Advanced age (>65)")
|
| 284 |
-
risk_score += 2
|
| 285 |
elif age > 50:
|
| 286 |
-
risk_factors.append("Older adult (50-65)")
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
if
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
if
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
# Medical history risk factors
|
| 302 |
-
medical_history = questionnaire_data.get('medical_history', '').lower()
|
| 303 |
-
if 'diabetes' in medical_history:
|
| 304 |
-
risk_factors.append("Diabetes mellitus")
|
| 305 |
-
risk_score += 3
|
| 306 |
-
if 'circulation' in medical_history or 'vascular' in medical_history:
|
| 307 |
-
risk_factors.append("Vascular/circulation issues")
|
| 308 |
-
risk_score += 2
|
| 309 |
-
if 'immune' in medical_history:
|
| 310 |
-
risk_factors.append("Immune system compromise")
|
| 311 |
-
risk_score += 2
|
| 312 |
-
|
| 313 |
-
# Determine risk level
|
| 314 |
-
if risk_score >= 7:
|
| 315 |
-
risk_level = "High"
|
| 316 |
-
elif risk_score >= 4:
|
| 317 |
-
risk_level = "Moderate"
|
| 318 |
-
else:
|
| 319 |
-
risk_level = "Low"
|
| 320 |
-
|
| 321 |
-
return {
|
| 322 |
-
'risk_score': risk_score,
|
| 323 |
-
'risk_level': risk_level,
|
| 324 |
-
'risk_factors': risk_factors
|
| 325 |
-
}
|
| 326 |
-
|
| 327 |
except Exception as e:
|
| 328 |
logging.error(f"Risk assessment error: {e}")
|
| 329 |
-
return {'risk_score':
|
|
|
|
| 17 |
from .config import Config
|
| 18 |
import os
|
| 19 |
|
|
|
|
| 20 |
default_system_prompt = (
|
| 21 |
"You are a world-class medical AI assistant specializing in wound care "
|
| 22 |
"with expertise in wound assessment and treatment. Provide concise, "
|
|
|
|
| 39 |
|
| 40 |
def _initialize_models(self):
|
| 41 |
"""Initialize CPU-only AI models; MedGemma is loaded on demand within GPU context."""
|
| 42 |
+
# Set HF token
|
| 43 |
if self.config.HF_TOKEN:
|
| 44 |
HfFolder.save_token(self.config.HF_TOKEN)
|
| 45 |
logging.info("HuggingFace token set successfully")
|
| 46 |
|
| 47 |
+
# YOLO detection on CPU (force CPU)
|
| 48 |
try:
|
| 49 |
+
self.models_cache['det'] = YOLO(
|
| 50 |
+
self.config.YOLO_MODEL_PATH,
|
| 51 |
+
device='cpu'
|
| 52 |
+
)
|
| 53 |
logging.info("✅ YOLO detection model loaded on CPU")
|
| 54 |
except Exception as e:
|
| 55 |
+
logging.error(
|
| 56 |
+
f"Failed to load YOLO model at '{self.config.YOLO_MODEL_PATH}': {e}"
|
| 57 |
+
)
|
| 58 |
+
# fail fast so you’ll immediately see why 'det' was never set
|
| 59 |
+
raise
|
| 60 |
|
| 61 |
# Segmentation model on CPU
|
| 62 |
try:
|
| 63 |
+
self.models_cache['seg'] = load_model(
|
| 64 |
+
self.config.SEG_MODEL_PATH,
|
| 65 |
+
compile=False
|
| 66 |
+
)
|
| 67 |
logging.info("✅ Segmentation model loaded on CPU")
|
| 68 |
except Exception as e:
|
| 69 |
logging.warning(f"Segmentation model not available: {e}")
|
|
|
|
| 80 |
except Exception as e:
|
| 81 |
logging.warning(f"Wound classification model not available: {e}")
|
| 82 |
|
| 83 |
+
# Embeddings for KB on CPU
|
| 84 |
try:
|
| 85 |
self.models_cache['embedding_model'] = HuggingFaceEmbeddings(
|
| 86 |
model_name='sentence-transformers/all-MiniLM-L6-v2',
|
|
|
|
| 90 |
except Exception as e:
|
| 91 |
logging.warning(f"Embedding model not available: {e}")
|
| 92 |
|
| 93 |
+
# Load PDF guidelines
|
| 94 |
self._load_knowledge_base()
|
| 95 |
|
| 96 |
def _load_knowledge_base(self):
|
|
|
|
| 97 |
docs = []
|
| 98 |
for pdf in self.config.GUIDELINE_PDFS:
|
| 99 |
if os.path.exists(pdf):
|
|
|
|
| 102 |
logging.info(f"Loaded PDF: {pdf}")
|
| 103 |
|
| 104 |
if docs and 'embedding_model' in self.models_cache:
|
| 105 |
+
splitter = RecursiveCharacterTextSplitter(
|
| 106 |
+
chunk_size=1000, chunk_overlap=100
|
| 107 |
+
)
|
| 108 |
chunks = splitter.split_documents(docs)
|
| 109 |
+
vs = FAISS.from_documents(
|
| 110 |
+
chunks, self.models_cache['embedding_model']
|
| 111 |
+
)
|
| 112 |
self.knowledge_base_cache['vectorstore'] = vs
|
| 113 |
logging.info(f"✅ Knowledge base loaded ({len(chunks)} chunks)")
|
| 114 |
else:
|
| 115 |
self.knowledge_base_cache['vectorstore'] = None
|
| 116 |
logging.warning("Knowledge base unavailable")
|
| 117 |
|
|
|
|
| 118 |
def perform_visual_analysis(self, image_pil):
|
| 119 |
"""Detect & segment on CPU; return only paths + metrics."""
|
| 120 |
+
if 'det' not in self.models_cache:
|
| 121 |
+
raise RuntimeError(
|
| 122 |
+
"YOLO detection model ('det') not loaded; cannot perform visual analysis"
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
try:
|
| 126 |
+
img_cv = cv2.cvtColor(
|
| 127 |
+
np.array(image_pil), cv2.COLOR_RGB2BGR
|
| 128 |
+
)
|
| 129 |
+
res = self.models_cache['det'].predict(
|
| 130 |
+
img_cv, verbose=False
|
| 131 |
+
)[0]
|
| 132 |
if not res.boxes:
|
| 133 |
raise ValueError("No wound detected")
|
| 134 |
+
|
| 135 |
# Bounding box
|
| 136 |
x1, y1, x2, y2 = res.boxes.xyxy[0].cpu().numpy().astype(int)
|
| 137 |
region = img_cv[y1:y2, x1:x2]
|
| 138 |
+
|
| 139 |
# Save detection overlay
|
| 140 |
det_vis = img_cv.copy()
|
| 141 |
+
cv2.rectangle(det_vis, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 142 |
os.makedirs(f"{self.config.UPLOADS_DIR}/analysis", exist_ok=True)
|
| 143 |
ts = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 144 |
+
det_path = (
|
| 145 |
+
f"{self.config.UPLOADS_DIR}/analysis/detection_{ts}.png"
|
| 146 |
+
)
|
| 147 |
cv2.imwrite(det_path, det_vis)
|
| 148 |
+
|
| 149 |
# Initialize metrics & seg
|
| 150 |
length = breadth = area = 0
|
| 151 |
seg_path = None
|
| 152 |
+
|
| 153 |
+
# Segmentation (if available)
|
| 154 |
if 'seg' in self.models_cache:
|
| 155 |
h, w = self.models_cache['seg'].input_shape[1:3]
|
| 156 |
+
inp = cv2.resize(region, (w, h)) / 255.0
|
| 157 |
+
mask = (
|
| 158 |
+
self.models_cache['seg']
|
| 159 |
+
.predict(np.expand_dims(inp, 0))[0, :, :, 0] > 0.5
|
| 160 |
+
).astype(np.uint8)
|
| 161 |
+
mask_rs = cv2.resize(
|
| 162 |
+
mask,
|
| 163 |
+
(region.shape[1], region.shape[0]),
|
| 164 |
+
interpolation=cv2.INTER_NEAREST
|
| 165 |
+
)
|
| 166 |
ov = region.copy()
|
| 167 |
+
ov[mask_rs == 1] = [0, 0, 255]
|
| 168 |
+
seg_vis = cv2.addWeighted(region, 0.7, ov, 0.3, 0)
|
| 169 |
+
seg_path = (
|
| 170 |
+
f"{self.config.UPLOADS_DIR}/analysis/segmentation_{ts}.png"
|
| 171 |
+
)
|
| 172 |
cv2.imwrite(seg_path, seg_vis)
|
| 173 |
+
|
| 174 |
+
cnts, _ = cv2.findContours(
|
| 175 |
+
mask_rs,
|
| 176 |
+
cv2.RETR_EXTERNAL,
|
| 177 |
+
cv2.CHAIN_APPROX_SIMPLE
|
| 178 |
+
)
|
| 179 |
if cnts:
|
| 180 |
cnt = max(cnts, key=cv2.contourArea)
|
| 181 |
+
_, _, w0, h0 = cv2.boundingRect(cnt)
|
| 182 |
+
length = round(h0 / self.px_per_cm, 2)
|
| 183 |
+
breadth = round(w0 / self.px_per_cm, 2)
|
| 184 |
+
area = round(
|
| 185 |
+
cv2.contourArea(cnt) / (self.px_per_cm ** 2), 2
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
# Classification
|
| 189 |
wound_type = 'Unknown'
|
| 190 |
if 'cls' in self.models_cache:
|
| 191 |
try:
|
| 192 |
+
labels = self.models_cache['cls'](
|
| 193 |
+
Image.fromarray(cv2.cvtColor(region, cv2.COLOR_BGR2RGB))
|
| 194 |
+
)
|
| 195 |
+
wound_type = max(labels, key=lambda x: x['score'])['label']
|
| 196 |
except Exception:
|
| 197 |
pass
|
| 198 |
+
|
| 199 |
return {
|
| 200 |
'wound_type': wound_type,
|
| 201 |
'length_cm': length,
|
| 202 |
'breadth_cm': breadth,
|
| 203 |
'surface_area_cm2': area,
|
| 204 |
+
'detection_confidence': float(
|
| 205 |
+
res.boxes.conf[0].cpu().item()
|
| 206 |
+
),
|
| 207 |
'detection_image_path': det_path,
|
| 208 |
'segmentation_image_path': seg_path
|
| 209 |
}
|
| 210 |
+
|
| 211 |
except Exception as e:
|
| 212 |
logging.error(f"Visual analysis error: {e}")
|
| 213 |
raise
|
| 214 |
|
| 215 |
def query_guidelines(self, query: str):
|
|
|
|
| 216 |
vs = self.knowledge_base_cache.get('vectorstore')
|
| 217 |
if not vs:
|
| 218 |
return "Clinical guidelines unavailable"
|
| 219 |
docs = vs.as_retriever(search_kwargs={'k':10}).invoke(query)
|
| 220 |
return '\n\n'.join(
|
| 221 |
+
f"Source: {d.metadata.get('source','?')}, Page: {d.metadata.get('page','?')}\n"
|
| 222 |
+
f"{d.page_content}"
|
| 223 |
for d in docs
|
| 224 |
)
|
| 225 |
|
| 226 |
@spaces.GPU(enable_queue=True, duration=120)
|
| 227 |
+
def generate_final_report(
|
| 228 |
+
self, patient_info, visual_results, guideline_context, image_pil, max_new_tokens=None
|
| 229 |
+
):
|
| 230 |
"""Run MedGemma on GPU; return markdown report."""
|
|
|
|
| 231 |
if 'medgemma_pipe' not in self.models_cache:
|
| 232 |
try:
|
| 233 |
self.models_cache['medgemma_pipe'] = pipeline(
|
|
|
|
| 241 |
logging.info("✅ MedGemma pipeline loaded on GPU")
|
| 242 |
except Exception as e:
|
| 243 |
logging.warning(f"MedGemma pipeline not available: {e}")
|
| 244 |
+
return self._generate_fallback_report(
|
| 245 |
+
patient_info, visual_results, guideline_context
|
| 246 |
+
)
|
| 247 |
|
|
|
|
| 248 |
msgs = [
|
| 249 |
{'role':'system','content':[{'type':'text','text':default_system_prompt}]},
|
| 250 |
{'role':'user','content':[]}
|
| 251 |
]
|
|
|
|
| 252 |
if image_pil:
|
| 253 |
msgs[1]['content'].append({'type':'image','image':image_pil})
|
| 254 |
for key in ('detection_image_path','segmentation_image_path'):
|
| 255 |
p = visual_results.get(key)
|
| 256 |
if p and os.path.exists(p):
|
| 257 |
+
msgs[1]['content'].append(
|
| 258 |
+
{'type':'image','image':Image.open(p)}
|
| 259 |
+
)
|
| 260 |
+
prompt = (
|
| 261 |
+
f"## Patient\n{patient_info}\n"
|
| 262 |
+
f"## Wound Type: {visual_results['wound_type']}"
|
| 263 |
+
)
|
| 264 |
msgs[1]['content'].append({'type':'text','text':prompt})
|
| 265 |
|
| 266 |
out = self.models_cache['medgemma_pipe'](
|
|
|
|
| 274 |
)
|
| 275 |
|
| 276 |
def _generate_fallback_report(self, patient_info, visual_results, guideline_context):
|
|
|
|
| 277 |
dp = visual_results.get('detection_image_path','N/A')
|
| 278 |
sp = visual_results.get('segmentation_image_path','N/A')
|
| 279 |
return (
|
|
|
|
| 285 |
)
|
| 286 |
|
| 287 |
def save_and_commit_image(self, image_pil):
|
|
|
|
| 288 |
os.makedirs(self.config.UPLOADS_DIR, exist_ok=True)
|
| 289 |
fn = f"{datetime.now():%Y%m%d_%H%M%S}.png"
|
| 290 |
path = os.path.join(self.config.UPLOADS_DIR, fn)
|
| 291 |
image_pil.convert('RGB').save(path)
|
| 292 |
+
if self.config.HF_TOKEN and getattr(self.config,'DATASET_ID', None):
|
| 293 |
try:
|
| 294 |
api = HfApi()
|
| 295 |
api.upload_file(
|
|
|
|
| 303 |
return path
|
| 304 |
|
| 305 |
def full_analysis_pipeline(self, image_pil, questionnaire_data):
|
|
|
|
| 306 |
try:
|
| 307 |
saved = self.save_and_commit_image(image_pil)
|
| 308 |
vis = self.perform_visual_analysis(image_pil)
|
| 309 |
+
info = ", ".join(
|
| 310 |
+
f"{k}:{v}" for k,v in questionnaire_data.items() if v
|
| 311 |
+
)
|
| 312 |
gc = self.query_guidelines(info)
|
| 313 |
report = self.generate_final_report(info, vis, gc, image_pil)
|
| 314 |
+
return {
|
| 315 |
+
'success': True,
|
| 316 |
+
'visual_analysis': vis,
|
| 317 |
+
'report': report,
|
| 318 |
+
'saved_image_path': saved
|
| 319 |
+
}
|
| 320 |
except Exception as e:
|
| 321 |
logging.error(f"Pipeline error: {e}")
|
| 322 |
+
return {'success': False, 'error': str(e)}
|
| 323 |
|
| 324 |
def analyze_wound(self, image, questionnaire_data):
|
| 325 |
+
if isinstance(image, str):
|
|
|
|
| 326 |
image = Image.open(image)
|
| 327 |
return self.full_analysis_pipeline(image, questionnaire_data)
|
| 328 |
|
| 329 |
def _assess_risk_legacy(self, questionnaire_data):
|
| 330 |
+
risk_factors, risk_score = [], 0
|
|
|
|
|
|
|
|
|
|
| 331 |
try:
|
|
|
|
| 332 |
age = questionnaire_data.get('patient_age', 0)
|
| 333 |
if age > 65:
|
| 334 |
+
risk_factors.append("Advanced age (>65)"); risk_score+=2
|
|
|
|
| 335 |
elif age > 50:
|
| 336 |
+
risk_factors.append("Older adult (50-65)"); risk_score+=1
|
| 337 |
+
duration = questionnaire_data.get('wound_duration','').lower()
|
| 338 |
+
if any(term in duration for term in ['month','year']):
|
| 339 |
+
risk_factors.append("Chronic wound (>4 weeks)"); risk_score+=3
|
| 340 |
+
pain = questionnaire_data.get('pain_level',0)
|
| 341 |
+
if pain>=7: risk_factors.append("High pain level"); risk_score+=2
|
| 342 |
+
hist = questionnaire_data.get('medical_history','').lower()
|
| 343 |
+
if 'diabetes' in hist: risk_factors.append("Diabetes mellitus"); risk_score+=3
|
| 344 |
+
if 'vascular' in hist: risk_factors.append("Vascular issues"); risk_score+=2
|
| 345 |
+
if 'immune' in hist: risk_factors.append("Immune compromise"); risk_score+=2
|
| 346 |
+
|
| 347 |
+
if risk_score>=7: level="High"
|
| 348 |
+
elif risk_score>=4: level="Moderate"
|
| 349 |
+
else: level="Low"
|
| 350 |
+
return {'risk_score':risk_score,'risk_level':level,'risk_factors':risk_factors}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
except Exception as e:
|
| 352 |
logging.error(f"Risk assessment error: {e}")
|
| 353 |
+
return {'risk_score':0,'risk_level':'Unknown','risk_factors':[]}
|