import gradio as gr
import os
import re
import logging
import base64
from datetime import datetime
from PIL import Image
import html
from typing import Optional
from .patient_history import PatientHistoryManager, ReportGenerator
def pil_to_base64(pil_image):
"""Convert PIL Image to base64 data URL"""
import io
import base64
from PIL import Image
if pil_image is None:
return None
try:
# Convert image to RGB if it's not already
if pil_image.mode != 'RGB':
pil_image = pil_image.convert('RGB')
buffer = io.BytesIO()
pil_image.save(buffer, format='PNG')
img_str = base64.b64encode(buffer.getvalue()).decode()
return f"data:image/png;base64,{img_str}"
except Exception as e:
logging.error(f"Error converting PIL image to base64: {e}")
return None
class UIComponents:
def __init__(self, auth_manager, database_manager, wound_analyzer):
self.auth_manager = auth_manager
self.database_manager = database_manager
self.wound_analyzer = wound_analyzer
self.current_user = {}
self.patient_history_manager = PatientHistoryManager(database_manager)
self.report_generator = ReportGenerator()
# Ensure uploads directory exists
if not os.path.exists("uploads"):
os.makedirs("uploads", exist_ok=True)
def image_to_base64(self, image_path):
"""Convert image to base64 data URL for embedding in HTML"""
if not image_path or not os.path.exists(image_path):
return None
try:
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode()
# Determine image format
image_ext = os.path.splitext(image_path)[1].lower()
if image_ext in [".jpg", ".jpeg"]:
mime_type = "image/jpeg"
elif image_ext == ".png":
mime_type = "image/png"
elif image_ext == ".gif":
mime_type = "image/gif"
else:
mime_type = "image/png" # Default to PNG
return f"data:{mime_type};base64,{encoded_string}"
except Exception as e:
logging.error(f"Error converting image to base64: {e}")
return None
def markdown_to_html(self, markdown_text):
"""Convert markdown text to proper HTML format with enhanced support"""
if not markdown_text:
return ""
# Escape HTML entities first to prevent issues with special characters
html_text = html.escape(markdown_text)
# Convert headers
html_text = re.sub(r"^### (.*?)$", r"
\1
", html_text, flags=re.MULTILINE)
html_text = re.sub(r"^## (.*?)$", r"\1
", html_text, flags=re.MULTILINE)
html_text = re.sub(r"^# (.*?)$", r"\1
", html_text, flags=re.MULTILINE)
# Convert bold text
html_text = re.sub(r"\*\*(.*?)\*\*", r"\1", html_text)
# Convert italic text
html_text = re.sub(r"\*(.*?)\*", r"\1", html_text)
# Convert code blocks (triple backticks)
html_text = re.sub(r"```(.*?)```", r"\1
", html_text, flags=re.DOTALL)
# Convert inline code (single backticks)
html_text = re.sub(r"`(.*?)`", r"\1", html_text)
# Convert blockquotes
html_text = re.sub(r"^> (.*?)$", r"\1
", html_text, flags=re.MULTILINE)
# Convert links
html_text = re.sub(r"\[(.*?)\]\((.*?)\)", r"\1", html_text)
# Convert horizontal rules
html_text = re.sub(r"^\s*[-*_]{3,}\s*$", r"
", html_text, flags=re.MULTILINE)
# Convert bullet points
lines = html_text.split("\n")
in_list = False
result_lines = []
for line in lines:
stripped = line.strip()
if stripped.startswith("- "):
if not in_list:
result_lines.append("")
in_list = True
result_lines.append(f"- {stripped[2:]}
")
else:
if in_list:
result_lines.append("
")
in_list = False
if stripped:
result_lines.append(f"{stripped}
")
else:
result_lines.append("
")
if in_list:
result_lines.append("")
return "\n".join(result_lines)
def get_organizations_dropdown(self):
"""Get list of organizations for dropdown"""
try:
organizations = self.database_manager.get_organizations()
return [f"{org['org_name']} - {org['location']}" for org in organizations]
except Exception as e:
logging.error(f"Error getting organizations: {e}")
return ["Default Hospital - Location"]
def get_custom_css(self):
return """
/* =================== SMARTHEAL CSS =================== */
/* Global Styling */
body, html {
margin: 0 !important;
padding: 0 !important;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen', 'Ubuntu', 'Cantarell', sans-serif !important;
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%) !important;
color: #1A202C !important;
line-height: 1.6 !important;
}
/* Professional Header with Logo */
.medical-header {
background: linear-gradient(135deg, #3182ce 0%, #2c5aa0 100%) !important;
color: white !important;
padding: 32px 40px !important;
border-radius: 20px 20px 0 0 !important;
display: flex !important;
align-items: center !important;
justify-content: center !important;
margin-bottom: 0 !important;
box-shadow: 0 10px 40px rgba(49, 130, 206, 0.3) !important;
border: none !important;
position: relative !important;
overflow: hidden !important;
}
.logo {
width: 80px !important;
height: 80px !important;
border-radius: 50% !important;
margin-right: 24px !important;
border: 4px solid rgba(255, 255, 255, 0.3) !important;
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.2) !important;
background: white !important;
padding: 4px !important;
}
.medical-header h1 {
font-size: 3.5rem !important;
font-weight: 800 !important;
margin: 0 !important;
text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.3) !important;
background: linear-gradient(45deg, #ffffff, #f8f9fa) !important;
-webkit-background-clip: text !important;
-webkit-text-fill-color: transparent !important;
background-clip: text !important;
filter: drop-shadow(2px 2px 4px rgba(0, 0, 0, 0.3)) !important;
}
.medical-header p {
font-size: 1.3rem !important;
margin: 8px 0 0 0 !important;
opacity: 0.95 !important;
font-weight: 500 !important;
text-shadow: 1px 1px 4px rgba(0, 0, 0, 0.2) !important;
}
/* Enhanced Form Styling */
.gr-form {
background: linear-gradient(145deg, #ffffff 0%, #f8f9fa 100%) !important;
border-radius: 20px !important;
padding: 32px !important;
margin: 24px 0 !important;
box-shadow: 0 16px 48px rgba(0, 0, 0, 0.1) !important;
border: 1px solid rgba(229, 62, 62, 0.1) !important;
backdrop-filter: blur(10px) !important;
position: relative !important;
overflow: hidden !important;
}
/* Professional Input Fields */
.gr-textbox, .gr-number {
border-radius: 12px !important;
border: 2px solid #E2E8F0 !important;
background: #FFFFFF !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05) !important;
font-size: 1rem !important;
color: #1A202C !important;
padding: 16px 20px !important;
}
.gr-textbox:focus, .gr-number:focus, .gr-textbox input:focus, .gr-number input:focus {
border-color: #E53E3E !important;
box-shadow: 0 0 0 4px rgba(229, 62, 62, 0.1) !important;
background: #FFFFFF !important;
outline: none !important;
transform: translateY(-1px) !important;
}
/* Enhanced Button Styling */
button.gr-button, button.gr-button-primary {
background: linear-gradient(135deg, #E53E3E 0%, #C53030 100%) !important;
color: #FFFFFF !important;
border: none !important;
border-radius: 12px !important;
font-weight: 700 !important;
padding: 16px 32px !important;
font-size: 1.1rem !important;
letter-spacing: 0.5px !important;
text-align: center !important;
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
box-shadow: 0 4px 16px rgba(229, 62, 62, 0.3) !important;
position: relative !important;
overflow: hidden !important;
text-transform: uppercase !important;
cursor: pointer !important;
}
button.gr-button:hover, button.gr-button-primary:hover {
background: linear-gradient(135deg, #C53030 0%, #9C2A2A 100%) !important;
box-shadow: 0 8px 32px rgba(229, 62, 62, 0.4) !important;
transform: translateY(-3px) !important;
}
/* Professional Status Messages */
.status-success {
background: linear-gradient(135deg, #F0FFF4 0%, #E6FFFA 100%) !important;
border: 2px solid #38A169 !important;
color: #22543D !important;
padding: 20px 24px !important;
border-radius: 16px !important;
font-weight: 600 !important;
margin: 16px 0 !important;
box-shadow: 0 8px 24px rgba(56, 161, 105, 0.2) !important;
backdrop-filter: blur(10px) !important;
}
.status-error {
background: linear-gradient(135deg, #FFF5F5 0%, #FED7D7 100%) !important;
border: 2px solid #E53E3E !important;
color: #742A2A !important;
padding: 20px 24px !important;
border-radius: 16px !important;
font-weight: 600 !important;
margin: 16px 0 !important;
box-shadow: 0 8px 24px rgba(229, 62, 62, 0.2) !important;
backdrop-filter: blur(10px) !important;
}
.status-warning {
background: linear-gradient(135deg, #FFFAF0 0%, #FEEBC8 100%) !important;
border: 2px solid #DD6B20 !important;
color: #9C4221 !important;
padding: 20px 24px !important;
border-radius: 16px !important;
font-weight: 600 !important;
margin: 16px 0 !important;
box-shadow: 0 8px 24px rgba(221, 107, 32, 0.2) !important;
backdrop-filter: blur(10px) !important;
}
/* Image gallery styling for better visualization */
.image-gallery {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
margin: 20px 0;
}
.image-item {
background: #f8f9fa;
border-radius: 12px;
padding: 15px;
box-shadow: 0 4px 12px rgba(0,0,0,0.1);
text-align: center;
}
.image-item img {
max-width: 100%;
height: auto;
border-radius: 8px;
box-shadow: 0 2px 8px rgba(0,0,0,0.15);
}
.image-item h4 {
margin: 15px 0 5px 0;
color: #2d3748;
font-weight: 600;
}
.image-item p {
margin: 0;
color: #666;
font-size: 0.9em;
}
/* Analyze button special styling */
#analyze-btn {
background: linear-gradient(135deg, #1B5CF3 0%, #1E3A8A 100%) !important;
color: #FFFFFF !important;
border: none !important;
border-radius: 8px !important;
font-weight: 700 !important;
padding: 14px 28px !important;
font-size: 1.1rem !important;
letter-spacing: 0.5px !important;
text-align: center !important;
transition: all 0.2s ease-in-out !important;
}
#analyze-btn:hover {
background: linear-gradient(135deg, #174ea6 0%, #123b82 100%) !important;
box-shadow: 0 4px 14px rgba(27, 95, 193, 0.4) !important;
transform: translateY(-2px) !important;
}
/* Responsive design */
@media (max-width: 768px) {
.medical-header {
padding: 16px !important;
text-align: center !important;
}
.medical-header h1 {
font-size: 2rem !important;
}
.logo {
width: 48px !important;
height: 48px !important;
margin-right: 16px !important;
}
.gr-form {
padding: 16px !important;
margin: 8px 0 !important;
}
.image-gallery {
grid-template-columns: 1fr;
}
}
"""
def create_interface(self):
"""
SmartHeal UI – aligned with current DB + history manager:
• Login (practitioner / organization)
• Practitioner: Wound Analysis (existing vs new patient), Patient History, View Details
• Images from disk are shown via data URLs for reliable rendering
"""
import gradio as gr
from PIL import Image
# ----------------------- helpers (inner) -----------------------
self._patient_choices = [] # list[str] rendered in dropdown
self._patient_map = {} # label -> patient_id (int)
def _to_data_url_if_local(path_or_url: str) -> str:
if not path_or_url:
return ""
try:
if os.path.exists(path_or_url):
return self.image_to_base64(path_or_url) or ""
return path_or_url # already a URL
except Exception:
return ""
def _refresh_patient_dropdown(user_id: int):
"""Query patient's list and prepare dropdown choices."""
self._patient_choices = []
self._patient_map = {}
try:
rows = self.patient_history_manager.get_patient_list(user_id) or []
# label starts with id -> stable parse
for r in rows:
pid = int(r.get("id") or 0)
nm = r.get("patient_name") or "Unknown"
age = r.get("patient_age") or ""
gen = r.get("patient_gender") or ""
v = int(r.get("total_visits") or 0)
label = f"{pid} • {nm} ({age}y {gen}) — visits: {v}"
self._patient_choices.append(label)
self._patient_map[label] = pid
except Exception as e:
logging.error(f"refresh dropdown error: {e}")
def _label_to_id(label: str) -> Optional[int]:
if not label: return None
try:
return int(str(label).split("•", 1)[0].strip())
except Exception:
return None
def _fetch_patient_core(pid: int):
"""Get name/age/gender for an existing patient id."""
row = self.database_manager.execute_query_one(
"SELECT id, name, age, gender FROM patients WHERE id=%s LIMIT 1", (pid,)
)
return row or {}
def _response_to_patient_id(resp_id: int) -> Optional[int]:
row = self.database_manager.execute_query_one(
"SELECT patient_id FROM questionnaire_responses WHERE id=%s LIMIT 1", (resp_id,)
)
try:
return int(row["patient_id"]) if row and "patient_id" in row else None
except Exception:
return None
def _rows_with_inline_images(rows: list[dict]) -> list[dict]:
"""Convert local file paths to data URLs so HTML displays them anywhere."""
out = []
for r in rows or []:
r = dict(r)
if r.get("image_url"):
r["image_url"] = _to_data_url_if_local(r["image_url"])
out.append(r)
return out
# ----------------------- Blocks UI -----------------------
with gr.Blocks(css=self.get_custom_css(), title="SmartHeal - AI Wound Care Assistant") as app:
# Header
logo_url = "https://scontent.fccu31-2.fna.fbcdn.net/v/t39.30808-6/275933824_102121829111657_3325198727201325354_n.jpg?_nc_cat=104&ccb=1-7&_nc_sid=6ee11a&_nc_ohc=45krrEUpcSUQ7kNvwGVdiMW&_nc_oc=AdkTdxEC_TkYGiyDkEtTJZ_DFZELW17XKFmWpswmFqGB7JSdvTyWtnrQyLS0USngEiY&_nc_zt=23&_nc_ht=scontent.fccu31-2.fna&_nc_gid=ufAA4Hj5gTRwON5POYzz0Q&oh=00_AfW1-jLEN5RGeggqOvGgEaK_gdg0EDgxf_VhKbZwFLUO0Q&oe=6897A98B"
gr.HTML(f"""
""")
# Disclaimer
gr.HTML("""
⚠️ IMPORTANT DISCLAIMER
This system is for testing/education and not a substitute for clinical judgment.
""")
# Panels: auth vs practitioner vs organization
with gr.Row():
with gr.Column(visible=True) as auth_panel:
with gr.Tabs():
with gr.Tab("🔐 Professional Login"):
login_username = gr.Textbox(label="👤 Username")
login_password = gr.Textbox(label="🔒 Password", type="password")
login_btn = gr.Button("🚀 Sign In", variant="primary")
login_status = gr.HTML("Please sign in.
")
with gr.Tab("📝 New Registration"):
signup_username = gr.Textbox(label="👤 Username")
signup_email = gr.Textbox(label="📧 Email")
signup_password = gr.Textbox(label="🔒 Password", type="password")
signup_name = gr.Textbox(label="👨⚕️ Full Name")
signup_role = gr.Radio(["practitioner", "organization"], label="Account Type", value="practitioner")
with gr.Group(visible=False) as org_fields:
org_name = gr.Textbox(label="Organization Name")
phone = gr.Textbox(label="Phone")
country_code = gr.Textbox(label="Country Code")
department = gr.Textbox(label="Department")
location = gr.Textbox(label="Location")
with gr.Group(visible=True) as prac_fields:
organization_dropdown = gr.Dropdown(choices=self.get_organizations_dropdown(), label="Select Organization")
signup_btn = gr.Button("✨ Create Account", variant="primary")
signup_status = gr.HTML()
with gr.Column(visible=False) as practitioner_panel:
user_info = gr.HTML("")
logout_btn_prac = gr.Button("🚪 Logout", variant="secondary")
with gr.Tabs():
# ------------------- WOUND ANALYSIS -------------------
with gr.Tab("🔬 Wound Analysis"):
with gr.Row():
with gr.Column(scale=1):
gr.HTML("📋 Patient Selection
")
patient_mode = gr.Radio(
["Existing patient", "New patient"],
label="Patient mode",
value="Existing patient"
)
existing_patient_dd = gr.Dropdown(
choices=[],
label="Select existing patient (ID • Name)",
interactive=True
)
with gr.Group(visible=False) as new_patient_group:
new_patient_name = gr.Textbox(label="Patient Name")
new_patient_age = gr.Number(label="Age", value=30, minimum=0, maximum=120)
new_patient_gender = gr.Dropdown(choices=["Male", "Female", "Other"], value="Male", label="Gender")
gr.HTML("🩹 Wound Information
")
wound_location = gr.Textbox(label="Wound Location", placeholder="e.g., Left ankle")
wound_duration = gr.Textbox(label="Wound Duration", placeholder="e.g., 2 weeks")
pain_level = gr.Slider(0, 10, value=5, step=1, label="Pain Level (0-10)")
gr.HTML("⚕️ Clinical Assessment
")
moisture_level = gr.Dropdown(["Dry", "Moist", "Wet", "Saturated"], value="Moist", label="Moisture Level")
infection_signs = gr.Dropdown(["None", "Mild", "Moderate", "Severe"], value="None", label="Signs of Infection")
diabetic_status = gr.Dropdown(["Non-diabetic", "Type 1", "Type 2", "Gestational"], value="Non-diabetic", label="Diabetic Status")
with gr.Column(scale=1):
gr.HTML("📸 Wound Image
")
wound_image = gr.Image(label="Upload Wound Image", type="filepath")
gr.HTML("📝 Medical History
")
previous_treatment = gr.Textbox(label="Previous Treatment", lines=3)
medical_history = gr.Textbox(label="Medical History", lines=3)
medications = gr.Textbox(label="Current Medications", lines=2)
allergies = gr.Textbox(label="Known Allergies", lines=2)
additional_notes = gr.Textbox(label="Additional Notes", lines=3)
analyze_btn = gr.Button("🔬 Analyze Wound", variant="primary", elem_id="analyze-btn")
analysis_output = gr.HTML("")
# ------------------- PATIENT HISTORY -------------------
with gr.Tab("📋 Patient History"):
with gr.Row():
with gr.Column(scale=2):
history_btn = gr.Button("📄 Load Patient History", variant="primary")
patient_history_output = gr.HTML("")
with gr.Column(scale=1):
search_patient_name = gr.Textbox(label="Search patient by name")
search_patient_btn = gr.Button("🔍 Search", variant="secondary")
specific_patient_output = gr.HTML("")
gr.HTML("
")
with gr.Row():
view_details_dd = gr.Dropdown(choices=[], label="Select patient to view details")
view_details_btn = gr.Button("📈 View Details (Timeline)", variant="primary")
view_details_output = gr.HTML("")
with gr.Column(visible=False) as organization_panel:
gr.HTML("Organization dashboard coming soon.
")
logout_btn_org = gr.Button("🚪 Logout", variant="secondary")
# ----------------------- handlers -----------------------
def toggle_role_fields(role):
return {
org_fields: gr.update(visible=(role == "organization")),
prac_fields: gr.update(visible=(role != "organization"))
}
def handle_signup(username, email, password, name, role, org_name_v, phone_v, cc_v, dept_v, loc_v, org_dropdown):
try:
if role == "organization":
org_data = {
'org_name': org_name_v,
'email': email,
'phone': phone_v,
'country_code': cc_v,
'department': dept_v,
'location': loc_v
}
org_id = self.database_manager.create_organization(org_data)
else:
# For now pick first org (or default)
org_id = 1
user_data = {
'username': username, 'email': email, 'password': password,
'name': name, 'role': role, 'org_id': org_id
}
ok = self.auth_manager.create_user(user_data)
if ok:
return "✅ Account created. Please log in.
"
return "❌ Could not create account. Username/email may exist.
"
except Exception as e:
return f"❌ Error: {html.escape(str(e))}
"
def handle_login(username, password):
user = self.auth_manager.authenticate_user(username, password)
if not user:
return {
login_status: "❌ Invalid credentials.
"
}
self.current_user = user
uid = int(user.get("id"))
role = user.get("role")
# Preload patient dropdowns for practitioners
if role == "practitioner":
_refresh_patient_dropdown(uid)
info = f"Welcome, {html.escape(user.get('name','User'))} — {html.escape(role)}
"
updates = {login_status: info}
if role == "practitioner":
updates.update({
auth_panel: gr.update(visible=False),
practitioner_panel: gr.update(visible=True),
user_info: info,
existing_patient_dd: gr.update(choices=self._patient_choices),
view_details_dd: gr.update(choices=self._patient_choices),
})
else:
updates.update({
auth_panel: gr.update(visible=False),
organization_panel: gr.update(visible=True),
})
return updates
def handle_logout():
self.current_user = {}
return {
auth_panel: gr.update(visible=True),
practitioner_panel: gr.update(visible=False),
organization_panel: gr.update(visible=False)
}
def on_patient_mode_change(mode):
return {
new_patient_group: gr.update(visible=(mode == "New patient")),
existing_patient_dd: gr.update(interactive=(mode == "Existing patient"))
}
def run_analysis(mode, existing_label,
np_name, np_age, np_gender,
w_loc, w_dur, pain, moist, infect, diabetic,
prev_tx, med_hist, meds, alls, notes, img_path):
try:
if not img_path:
return "❌ Please upload a wound image.
"
user_id = int(self.current_user.get("id", 0) or 0)
if not user_id:
return "❌ Please login first.
"
# Determine patient core fields (ensures same patient_id for existing)
if mode == "Existing patient":
pid = _label_to_id(existing_label)
if not pid:
return "⚠️ Select an existing patient.
"
pcore = _fetch_patient_core(pid)
patient_name_v = pcore.get("name")
patient_age_v = pcore.get("age")
patient_gender_v = pcore.get("gender")
else:
patient_name_v = np_name
patient_age_v = np_age
patient_gender_v = np_gender
# Build questionnaire payload
q_payload = {
'user_id': user_id,
'patient_name': patient_name_v,
'patient_age': patient_age_v,
'patient_gender': patient_gender_v,
'wound_location': w_loc,
'wound_duration': w_dur,
'pain_level': pain,
'moisture_level': moist,
'infection_signs': infect,
'diabetic_status': diabetic,
'previous_treatment': prev_tx,
'medical_history': med_hist,
'medications': meds,
'allergies': alls,
'additional_notes': notes
}
# Save questionnaire -> response_id
response_id = self.database_manager.save_questionnaire(q_payload)
if not response_id:
return "❌ Could not save questionnaire.
"
# Resolve patient_id from response (works for new or existing)
patient_id = _response_to_patient_id(response_id)
if not patient_id:
return "❌ Could not resolve patient ID.
"
# Save wound image to DB
try:
with Image.open(img_path) as pil:
pil = pil.convert("RGB")
img_meta = self.database_manager.save_wound_image(patient_id, pil)
image_db_id = img_meta["id"] if img_meta else None
except Exception as e:
logging.error(f"save_wound_image error: {e}")
image_db_id = None
# Prepare AI analyzer questionnaire dict
q_for_ai = {
'age': patient_age_v,
'diabetic': 'Yes' if diabetic != 'Non-diabetic' else 'No',
'allergies': alls,
'date_of_injury': 'Unknown',
'professional_care': 'Yes',
'oozing_bleeding': 'Minor Oozing' if infect != 'None' else 'None',
'infection': 'Yes' if infect != 'None' else 'No',
'moisture': moist,
'patient_name': patient_name_v,
'patient_gender': patient_gender_v,
'wound_location': w_loc,
'wound_duration': w_dur,
'pain_level': pain,
'previous_treatment': prev_tx,
'medical_history': med_hist,
'medications': meds,
'additional_notes': notes
}
# Run AI
analysis_result = self.wound_analyzer.analyze_wound(img_path, q_for_ai)
if not analysis_result or not analysis_result.get("success"):
err = (analysis_result or {}).get("error", "Unknown analysis error")
return f"❌ AI Analysis failed: {html.escape(str(err))}
"
# Persist AI analysis (ties back to template via response->questionnaire_id)
try:
self.database_manager.save_analysis(response_id, image_db_id, analysis_result)
except Exception as e:
logging.error(f"save_analysis error: {e}")
# If a new patient was created, refresh dropdowns
if mode == "New patient":
_refresh_patient_dropdown(user_id)
# Render fancy results (this method already converts file paths to data URLs)
return self._format_comprehensive_analysis_results(
analysis_result, img_path, q_for_ai
)
except Exception as e:
logging.exception("run_analysis exception")
return f"❌ System error: {html.escape(str(e))}
"
def load_history():
try:
uid = int(self.current_user.get("id", 0) or 0)
if not uid:
return "❌ Please login first.
"
rows = self.patient_history_manager.get_user_patient_history(uid) or []
rows = _rows_with_inline_images(rows)
return self.patient_history_manager.format_history_for_display(rows)
except Exception as e:
logging.error(f"load_history error: {e}")
return f"❌ Error: {html.escape(str(e))}
"
def do_search(name):
try:
uid = int(self.current_user.get("id", 0) or 0)
if not uid:
return "❌ Please login first.
"
if not (name or "").strip():
return "⚠️ Enter a name to search.
"
rows = self.patient_history_manager.search_patient_by_name(uid, name.strip()) or []
rows = _rows_with_inline_images(rows)
return self.patient_history_manager.format_patient_data_for_display(rows)
except Exception as e:
logging.error(f"search error: {e}")
return f"❌ Error: {html.escape(str(e))}
"
def view_details(existing_label):
try:
uid = int(self.current_user.get("id", 0) or 0)
if not uid:
return "❌ Please login first.
"
pid = _label_to_id(existing_label)
if not pid:
return "⚠️ Select a patient.
"
rows = self.patient_history_manager.get_wound_progression_by_id(uid, pid) or []
rows = _rows_with_inline_images(rows)
return self.patient_history_manager.format_patient_progress_for_display(rows)
except Exception as e:
logging.error(f"view_details error: {e}")
return f"❌ Error: {html.escape(str(e))}
"
# ----------------------- wiring -----------------------
signup_role.change(
toggle_role_fields,
inputs=[signup_role],
outputs=[org_fields, prac_fields]
)
signup_btn.click(
handle_signup,
inputs=[signup_username, signup_email, signup_password, signup_name, signup_role,
org_name, phone, country_code, department, location, organization_dropdown],
outputs=[signup_status]
)
login_btn.click(
handle_login,
inputs=[login_username, login_password],
outputs=[login_status, auth_panel, practitioner_panel, organization_panel,
user_info, existing_patient_dd, view_details_dd]
)
logout_btn_prac.click(handle_logout, outputs=[auth_panel, practitioner_panel, organization_panel])
logout_btn_org.click(handle_logout, outputs=[auth_panel, practitioner_panel, organization_panel])
patient_mode.change(
on_patient_mode_change,
inputs=[patient_mode],
outputs=[new_patient_group, existing_patient_dd]
)
analyze_btn.click(
run_analysis,
inputs=[
patient_mode, existing_patient_dd,
new_patient_name, new_patient_age, new_patient_gender,
wound_location, wound_duration, pain_level, moisture_level, infection_signs, diabetic_status,
previous_treatment, medical_history, medications, allergies, additional_notes, wound_image
],
outputs=[analysis_output]
)
history_btn.click(load_history, outputs=[patient_history_output])
search_patient_btn.click(do_search, inputs=[search_patient_name], outputs=[specific_patient_output])
view_details_btn.click(view_details, inputs=[view_details_dd], outputs=[view_details_output])
return app
def _format_comprehensive_analysis_results(self, analysis_result, image_url=None, questionnaire_data=None):
"""Format comprehensive analysis results with all visualization images from AIProcessor."""
try:
# Extract the core analysis results from AIProcessor
success = analysis_result.get('success', False)
if not success:
error_msg = analysis_result.get('error', 'Unknown error')
return f"❌ Analysis failed: {error_msg}
"
visual_analysis = analysis_result.get('visual_analysis', {})
report = analysis_result.get('report', '')
saved_image_path = analysis_result.get('saved_image_path', '')
# Extract wound metrics
wound_type = visual_analysis.get('wound_type', 'Unknown')
length_cm = visual_analysis.get('length_cm', 0)
breadth_cm = visual_analysis.get('breadth_cm', 0)
area_cm2 = visual_analysis.get('surface_area_cm2', 0)
detection_confidence = visual_analysis.get('detection_confidence', 0)
# Get image paths for visualizations
detection_image_path = visual_analysis.get('detection_image_path', '')
segmentation_image_path = visual_analysis.get('segmentation_image_path', '')
original_image_path = visual_analysis.get('original_image_path', '')
# Convert images to base64 for embedding
original_image_base64 = None
detection_image_base64 = None
segmentation_image_base64 = None
# Original uploaded image
if image_url and os.path.exists(image_url):
original_image_base64 = self.image_to_base64(image_url)
elif original_image_path and os.path.exists(original_image_path):
original_image_base64 = self.image_to_base64(original_image_path)
elif saved_image_path and os.path.exists(saved_image_path):
original_image_base64 = self.image_to_base64(saved_image_path)
# Detection visualization
if detection_image_path and os.path.exists(detection_image_path):
detection_image_base64 = self.image_to_base64(detection_image_path)
# Segmentation visualization
if segmentation_image_path and os.path.exists(segmentation_image_path):
segmentation_image_base64 = self.image_to_base64(segmentation_image_path)
# Generate risk assessment from questionnaire data
risk_assessment = self._generate_risk_assessment(questionnaire_data)
risk_level = risk_assessment['risk_level']
risk_score = risk_assessment['risk_score']
risk_factors = risk_assessment['risk_factors']
# Set risk class for styling
risk_class = "low"
if risk_level.lower() == "moderate":
risk_class = "moderate"
elif risk_level.lower() in ["high", "very high"]:
risk_class = "high"
# Format risk factors
risk_factors_html = "" + "".join(f"- {factor}
" for factor in risk_factors) + "
" if risk_factors else "No specific risk factors identified.
"
# Create image gallery
image_gallery_html = ""
if original_image_base64 or detection_image_base64 or segmentation_image_base64:
image_gallery_html = ''
if original_image_base64:
image_gallery_html += f'''
📸 Original Wound Image
Uploaded image for analysis
'''
if detection_image_base64:
image_gallery_html += f'''
🎯 Wound Detection
AI-detected wound boundaries with {detection_confidence:.1%} confidence
'''
if segmentation_image_base64:
image_gallery_html += f'''
📏 Wound Segmentation
Detailed wound area measurement and analysis
'''
image_gallery_html += '
'
# Convert markdown report to HTML
report_html = ""
if report:
report_html = self.markdown_to_html(report)
# Final comprehensive HTML output
html_output = f"""
🔬 SmartHeal AI Comprehensive Analysis
Advanced Computer Vision & Medical AI Assessment
Patient: {questionnaire_data.get('patient_name', 'Unknown')} | Analysis Date: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
✅ Analysis Status: Analysis completed successfully with comprehensive wound assessment
🖼️ Visual Analysis Gallery
{image_gallery_html}
🔍 Wound Detection & Classification
Detection Confidence
{detection_confidence:.1%}
Location
{questionnaire_data.get('wound_location', 'Not specified')}
📏 Wound Measurements
Length
{length_cm:.2f} cm
Width
{breadth_cm:.2f} cm
Surface Area
{area_cm2:.2f} cm²
⚠️ Risk Assessment
{risk_level} RISK
Risk Score: {risk_score}/10
Identified Risk Factors:
{risk_factors_html}
👤 Patient Information Summary
Age: {questionnaire_data.get('age', 'Not specified')} years
Gender: {questionnaire_data.get('patient_gender', 'Not specified')}
Diabetic Status: {questionnaire_data.get('diabetic', 'Unknown')}
Pain Level: {questionnaire_data.get('pain_level', 'Not assessed')}/10
Wound Duration: {questionnaire_data.get('wound_duration', 'Not specified')}
Moisture Level: {questionnaire_data.get('moisture', 'Not assessed')}
{f"
Medical History: {questionnaire_data.get('medical_history', 'None provided')}
" if questionnaire_data.get('medical_history') else ""}
{f"
Current Medications: {questionnaire_data.get('medications', 'None listed')}
" if questionnaire_data.get('medications') else ""}
{f"
Known Allergies: {questionnaire_data.get('allergies', 'None listed')}
" if questionnaire_data.get('allergies') else ""}
{f'
🤖 AI-Generated Clinical Report
{report_html}
' if report_html else ''}
⚠️ Important Medical Disclaimers
- Not a Medical Diagnosis: This AI analysis is for informational purposes only and does not constitute medical advice, diagnosis, or treatment.
- Professional Consultation Required: Always consult with qualified healthcare professionals for proper clinical assessment and treatment decisions.
- Measurement Accuracy: All measurements are estimates based on computer vision algorithms and should be verified with clinical tools.
- Risk Assessment Limitations: Risk factors are based on provided information and may not reflect the complete clinical picture.
🏥 Analysis completed by SmartHeal AI - Advanced Wound Care Assistant
Report generated on {datetime.now().strftime('%B %d, %Y at %I:%M %p')}
"""
return html_output
except Exception as e:
logging.error(f"Error formatting comprehensive results: {e}")
return f"❌ Error displaying results: {str(e)}
"
def _generate_risk_assessment(self, questionnaire_data):
"""Generate risk assessment based on questionnaire data"""
if not questionnaire_data:
return {'risk_level': 'Unknown', 'risk_score': 0, 'risk_factors': []}
risk_factors = []
risk_score = 0
try:
# Age assessment
age = questionnaire_data.get('age', 0)
if isinstance(age, str):
try:
age = int(age)
except ValueError:
age = 0
if age > 65:
risk_factors.append("Advanced age (>65 years)")
risk_score += 2
elif age > 50:
risk_factors.append("Older adult (50-65 years)")
risk_score += 1
# Diabetic status
diabetic_status = str(questionnaire_data.get('diabetic', '')).lower()
if 'yes' in diabetic_status:
risk_factors.append("Diabetes mellitus")
risk_score += 3
# Infection signs
infection = str(questionnaire_data.get('infection', '')).lower()
if 'yes' in infection:
risk_factors.append("Signs of infection present")
risk_score += 3
# Pain level
pain_level = questionnaire_data.get('pain_level', 0)
if isinstance(pain_level, str):
try:
pain_level = float(pain_level)
except ValueError:
pain_level = 0
if pain_level >= 7:
risk_factors.append("High pain level (≥7/10)")
risk_score += 2
elif pain_level >= 5:
risk_factors.append("Moderate pain level (5-6/10)")
risk_score += 1
# Wound duration
duration = str(questionnaire_data.get('wound_duration', '')).lower()
if any(term in duration for term in ['month', 'months', 'year', 'years']):
risk_factors.append("Chronic wound (>4 weeks)")
risk_score += 3
# Moisture level
moisture = str(questionnaire_data.get('moisture', '')).lower()
if any(term in moisture for term in ['wet', 'saturated']):
risk_factors.append("Excessive wound exudate")
risk_score += 1
# Medical history analysis
medical_history = str(questionnaire_data.get('medical_history', '')).lower()
if any(term in medical_history for term in ['vascular', 'circulation', 'heart']):
risk_factors.append("Cardiovascular disease")
risk_score += 2
if any(term in medical_history for term in ['immune', 'cancer', 'steroid']):
risk_factors.append("Immune system compromise")
risk_score += 2
if any(term in medical_history for term in ['smoking', 'tobacco']):
risk_factors.append("Smoking history")
risk_score += 2
# Determine risk level
if risk_score >= 8:
risk_level = "Very High"
elif risk_score >= 6:
risk_level = "High"
elif risk_score >= 3:
risk_level = "Moderate"
else:
risk_level = "Low"
return {
'risk_score': risk_score,
'risk_level': risk_level,
'risk_factors': risk_factors
}
except Exception as e:
logging.error(f"Risk assessment error: {e}")
return {
'risk_score': 0,
'risk_level': 'Unknown',
'risk_factors': ['Unable to assess risk due to data processing error']
}