|
|
import groq |
|
|
from jobspy import scrape_jobs |
|
|
import pandas as pd |
|
|
import json |
|
|
from typing import List, Dict |
|
|
import numpy as np |
|
|
import time |
|
|
import tempfile |
|
|
|
|
|
|
|
|
def make_clickable(url): |
|
|
return f"{url}" |
|
|
|
|
|
def convert_prompt_to_parameters(client, prompt: str, location_pref) -> Dict[str, str]: |
|
|
""" |
|
|
Convert user input prompt to structured job search parameters using AI. |
|
|
|
|
|
Args: |
|
|
client: Groq AI client |
|
|
prompt (str): User's job search description |
|
|
|
|
|
Returns: |
|
|
Dict[str, str]: Extracted search parameters with search_term and location |
|
|
""" |
|
|
system_prompt = f""" |
|
|
You are a language decoder. Extract: |
|
|
- search_term: job role/keywords (expand abbreviations) |
|
|
- location: mentioned place or "{location_pref}" |
|
|
Return only: [{{"search_term": "term", "location": "location"}}] |
|
|
""" |
|
|
|
|
|
response = client.chat.completions.create( |
|
|
messages=[ |
|
|
{"role": "system", "content": system_prompt}, |
|
|
{"role": "user", "content": f"Extract from: {prompt}"} |
|
|
], |
|
|
max_tokens=1024, |
|
|
model='llama3-8b-8192', |
|
|
temperature=0.2 |
|
|
) |
|
|
|
|
|
print("response: ", response.choices[0].message.content) |
|
|
|
|
|
try: |
|
|
print("*****************************************") |
|
|
content = response.choices[0].message.content.strip() |
|
|
|
|
|
|
|
|
json_start = content.find("[") |
|
|
json_end = content.rfind("]") + 1 |
|
|
|
|
|
|
|
|
if json_start == -1 or json_end == -1: |
|
|
raise ValueError("No valid JSON array found in LLM response.") |
|
|
|
|
|
|
|
|
json_str = content[json_start:json_end] |
|
|
return json.loads(json_str) |
|
|
except json.JSONDecodeError: |
|
|
return {"search_term": prompt, "location": location_pref} |
|
|
|
|
|
def get_job_data(search_params: Dict[str, str]) -> pd.DataFrame: |
|
|
""" |
|
|
Fetch job listings from multiple sources based on search parameters. |
|
|
|
|
|
Args: |
|
|
search_params (Dict[str, str]): Search parameters including term and location |
|
|
|
|
|
Returns: |
|
|
pd.DataFrame: Scraped job listings |
|
|
""" |
|
|
print("location: ", search_params["location"]) |
|
|
try: |
|
|
return scrape_jobs( |
|
|
site_name=["indeed", "linkedin", "glassdoor", "google"], |
|
|
search_term=search_params["search_term"], |
|
|
google_search_term=search_params["search_term"] + " jobs near " + search_params["location"], |
|
|
location=search_params["location"], |
|
|
results_wanted=60, |
|
|
hours_old=72, |
|
|
country_indeed=search_params["location"], |
|
|
linkedin_fetch_description=True |
|
|
) |
|
|
except Exception as e: |
|
|
return pd.DataFrame() |
|
|
|
|
|
|
|
|
import json |
|
|
import time |
|
|
import pandas as pd |
|
|
from typing import List, Dict |
|
|
|
|
|
|
|
|
WEIGHTS = { |
|
|
"qualification_match": 0.3, |
|
|
"skills_match": 0.3, |
|
|
"experience_match": 0.2, |
|
|
"salary_match": 0.2 |
|
|
} |
|
|
|
|
|
|
|
|
def analyze_job_batch( |
|
|
client, |
|
|
resume_json: Dict, |
|
|
jobs_batch: List[Dict], |
|
|
start_index: int, |
|
|
retry_count: int = 0 |
|
|
) -> pd.DataFrame: |
|
|
""" |
|
|
Analyze a batch of jobs against the resume with retry logic. |
|
|
|
|
|
Args: |
|
|
client: Groq AI client |
|
|
resume_json (Dict): Resume details in JSON format |
|
|
jobs_batch (List[Dict]): Batch of job listings |
|
|
start_index (int): Starting index of the batch |
|
|
retry_count (int, optional): Number of retry attempts. Defaults to 0. |
|
|
|
|
|
Returns: |
|
|
pd.DataFrame: Job match analysis results with separate scores for qualification, skills, and experience. |
|
|
""" |
|
|
if retry_count >= 3: |
|
|
return pd.DataFrame() |
|
|
|
|
|
system_prompt = """ |
|
|
Rate resume-job matches based on qualifications, skills, and experience separately. |
|
|
Ensure the candidate's experience level aligns with the job seniority (e.g., do not recommend senior-level jobs to freshers). |
|
|
Consider job requirements, candidate qualifications, relevant skills, and years of experience. |
|
|
Consider if the salary of the job matches the candidate's salary expectations. If the salary of the job is more than the expectation it is good. If no salary is mentioned, estimate it based on the job description and find the match. |
|
|
|
|
|
Return only a JSON array: |
|
|
[{"job_index": number, "qualification_match": 0-100, "skills_match": 0-100, "experience_match": 0-100, "qualification_reason": "brief reason based on qualifications", "skill_reason": "brief reason based on skill", "experience_reason": "brief reason based on experience", "salary_match": 0-100}] |
|
|
""" |
|
|
|
|
|
jobs_info = [ |
|
|
{ |
|
|
'index': idx + start_index, |
|
|
'title': job['title'], |
|
|
'desc': job.get('description', ''), |
|
|
} |
|
|
for idx, job in enumerate(jobs_batch) |
|
|
] |
|
|
|
|
|
analysis_prompt = f""" |
|
|
Resume Details: {json.dumps(resume_json)} |
|
|
Jobs: {json.dumps(jobs_info)} |
|
|
""" |
|
|
|
|
|
try: |
|
|
response = client.generate_content([system_prompt, analysis_prompt]) |
|
|
print("Response overall: ", response) |
|
|
print("Response: ", response.text) |
|
|
content = response.text.strip() |
|
|
|
|
|
|
|
|
json_start = content.find("[") |
|
|
json_end = content.rfind("]") + 1 |
|
|
|
|
|
|
|
|
if json_start == -1 or json_end == -1: |
|
|
raise ValueError("No valid JSON array found in LLM response.") |
|
|
|
|
|
|
|
|
json_str = content[json_start:json_end] |
|
|
matches = json.loads(json_str) |
|
|
|
|
|
|
|
|
for match in matches: |
|
|
match["match_score"] = ( |
|
|
match["qualification_match"] * WEIGHTS["qualification_match"] + |
|
|
match["skills_match"] * WEIGHTS["skills_match"] + |
|
|
match["experience_match"] * WEIGHTS["experience_match"]+ |
|
|
match["salary_match"] * WEIGHTS["salary_match"] |
|
|
) |
|
|
|
|
|
|
|
|
return pd.DataFrame(matches) |
|
|
except Exception as e: |
|
|
print(f"Error in analyze_job_batch: {str(e)}") |
|
|
if retry_count < 3: |
|
|
time.sleep(2) |
|
|
return analyze_job_batch(client, resume_json, jobs_batch, start_index, retry_count + 1) |
|
|
print(f"Batch {start_index} failed after retries: {str(e)}") |
|
|
return pd.DataFrame() |
|
|
|
|
|
|
|
|
def analyze_jobs_in_batches( |
|
|
client, |
|
|
resume: str, |
|
|
jobs_df: pd.DataFrame, |
|
|
batch_size: int = 3 |
|
|
) -> pd.DataFrame: |
|
|
""" |
|
|
Process job listings in batches and analyze match with resume. |
|
|
|
|
|
Args: |
|
|
client: Groq AI client |
|
|
resume (str): Resume text |
|
|
jobs_df (pd.DataFrame): DataFrame of job listings |
|
|
batch_size (int, optional): Number of jobs to process in each batch. Defaults to 3. |
|
|
|
|
|
Returns: |
|
|
pd.DataFrame: Sorted job matches by match score |
|
|
""" |
|
|
all_matches = [] |
|
|
jobs_dict = jobs_df.to_dict('records') |
|
|
|
|
|
print("jobs_dict: ", jobs_dict) |
|
|
|
|
|
for i in range(0, len(jobs_dict), batch_size): |
|
|
batch = jobs_dict[i:i + batch_size] |
|
|
|
|
|
print("batch done", i) |
|
|
|
|
|
batch_matches = analyze_job_batch(client, resume, batch, i) |
|
|
|
|
|
print("batch matches", batch_matches) |
|
|
|
|
|
if not batch_matches.empty: |
|
|
all_matches.append(batch_matches) |
|
|
|
|
|
|
|
|
|
|
|
if all_matches: |
|
|
final_matches = pd.concat(all_matches, ignore_index=True) |
|
|
return final_matches.sort_values('match_score', ascending=False) |
|
|
return pd.DataFrame() |
|
|
|
|
|
import gradio as gr |
|
|
import pandas as pd |
|
|
import fitz |
|
|
import os |
|
|
from groq import Groq |
|
|
import google.generativeai as genai |
|
|
|
|
|
def extract_text_from_pdf(pdf_path): |
|
|
"""Extracts text from a PDF file.""" |
|
|
text = "" |
|
|
pdf_document = fitz.open(pdf_path) |
|
|
for page in pdf_document: |
|
|
text += page.get_text("text") + "\n" |
|
|
pdf_document.close() |
|
|
return text |
|
|
|
|
|
def process_resume(file, job_description, location_pref, experience_years, yearly_salary_expectation): |
|
|
if not file or not file.name.endswith('.pdf'): |
|
|
return "Invalid file. Please upload a PDF.", None |
|
|
|
|
|
resume_text = extract_text_from_pdf(file.name) |
|
|
|
|
|
api_key = os.getenv("Groq_api_key") |
|
|
client = Groq(api_key=api_key) |
|
|
|
|
|
response = client.chat.completions.create( |
|
|
model="llama3-70b-8192", |
|
|
messages=[ |
|
|
{"role": "system", "content": "You are an AI that extracts structured data from resumes."}, |
|
|
{"role": "user", "content": f"Convert the following resume text into a structured JSON format inside third bracket where each section is dynamically detected:\n\n{resume_text}, add years of experience as {experience_years}, salary expectation as {yearly_salary_expectation}"} |
|
|
] |
|
|
) |
|
|
structured_data = response.choices[0].message.content.strip() |
|
|
|
|
|
|
|
|
gemini_api_key = os.getenv("Gemini_api_key") |
|
|
genai.configure(api_key=gemini_api_key) |
|
|
model = genai.GenerativeModel("gemini-1.5-flash-latest") |
|
|
|
|
|
client = Groq(api_key=api_key) |
|
|
processed_params = convert_prompt_to_parameters(client, job_description, location_pref) |
|
|
jobs_data = get_job_data(processed_params[0]) |
|
|
|
|
|
if not jobs_data.empty: |
|
|
data = pd.DataFrame(jobs_data) |
|
|
data = data[data['description'].notna()].reset_index(drop=True) |
|
|
matches_df = analyze_jobs_in_batches(model, structured_data, data, batch_size=30) |
|
|
|
|
|
print(matches_df) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not matches_df.empty: |
|
|
matched_jobs = data.iloc[matches_df['job_index']].copy() |
|
|
matched_jobs['match_score'] = matches_df['match_score'] |
|
|
matched_jobs["qualification_match"] = matches_df["qualification_match"] |
|
|
matched_jobs["skills_match"] = matches_df["skills_match"] |
|
|
matched_jobs["salary_match"] = matches_df["salary_match"] |
|
|
matched_jobs["experience_match"] = matches_df["experience_match"] |
|
|
matched_jobs["qualification_reason"] = matches_df["qualification_reason"] |
|
|
matched_jobs["skill_reason"] = matches_df["skill_reason"] |
|
|
matched_jobs["experience_reason"] = matches_df["experience_reason"] |
|
|
|
|
|
print(f"Found {len(matched_jobs)} recommended matches!") |
|
|
display_cols = ['site', 'job_url', 'title', 'company', 'location', 'match_score', 'qualification_match', 'qualification_reason', 'skills_match', 'skill_reason', 'experience_match', 'experience_reason', 'salary_match'] |
|
|
display_df = matched_jobs[matched_jobs['match_score'] > 50][display_cols].sort_values('match_score', ascending=False) |
|
|
display_df['job_url'] = display_df['job_url'].apply(make_clickable) |
|
|
print(display_df.to_string(index=False)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".csv", mode='w', newline='', encoding='utf-8') |
|
|
display_df.to_csv(temp_file.name, index=False) |
|
|
temp_file.close() |
|
|
|
|
|
return "β
Job matches found! Download your personalized job list below.", temp_file.name |
|
|
else: |
|
|
return "β οΈ No suitable job matches found.", None |
|
|
else: |
|
|
return "β No jobs found with the given parameters.", None |
|
|
|
|
|
|
|
|
def gradio_interface(): |
|
|
with gr.Blocks() as demo: |
|
|
gr.Markdown(""" |
|
|
# π Smart Job Search with AI Matching |
|
|
### Upload your resume and get AI-powered job recommendations! |
|
|
""") |
|
|
|
|
|
with gr.Row(): |
|
|
gr.Markdown("# π Upload Resume") |
|
|
|
|
|
with gr.Row(): |
|
|
resume_input = gr.File(label="Upload Resume (PDF)") |
|
|
|
|
|
with gr.Row(): |
|
|
gr.Markdown("### π Job Preferences") |
|
|
|
|
|
with gr.Row(): |
|
|
|
|
|
job_desc_input = gr.Textbox(label="Job Role", placeholder="Enter desired job role") |
|
|
|
|
|
location_input = gr.Dropdown( |
|
|
label="Preferred Location", |
|
|
choices=[ |
|
|
"Argentina", "Australia", "Austria", "Bahrain", "Belgium", "Brazil", "Canada", "Chile", |
|
|
"China", "Colombia", "Costa Rica", "Czech Republic", "Denmark", "Ecuador", "Egypt", "Finland", |
|
|
"France", "Germany", "Greece", "Hong Kong", "Hungary", "India", "Indonesia", "Ireland", |
|
|
"Israel", "Italy", "Japan", "Kuwait", "Luxembourg", "Malaysia", "Mexico", "Morocco", |
|
|
"Netherlands", "New Zealand", "Nigeria", "Norway", "Oman", "Pakistan", "Panama", "Peru", |
|
|
"Philippines", "Poland", "Portugal", "Qatar", "Romania", "Saudi Arabia", "Singapore", |
|
|
"South Africa", "South Korea", "Spain", "Sweden", "Switzerland", "Taiwan", "Thailand", |
|
|
"Turkey", "Ukraine", "United Arab Emirates", "UK", "USA", "Uruguay", "Venezuela", "Vietnam" |
|
|
], |
|
|
value=None |
|
|
) |
|
|
|
|
|
experience_input = gr.Number(label="Years of Experience", value=0) |
|
|
salary_input = gr.Number(label="Expected Salary (Yearly)", value=100000) |
|
|
|
|
|
submit_btn = gr.Button("π Find Jobs", elem_classes="primary-button") |
|
|
output_text = gr.Textbox(label="Result", interactive=False) |
|
|
download_link = gr.File(label="π₯ Download Job List") |
|
|
|
|
|
submit_btn.click( |
|
|
process_resume, |
|
|
inputs=[resume_input, job_desc_input, location_input, experience_input, salary_input], |
|
|
outputs=[output_text, download_link] |
|
|
) |
|
|
|
|
|
return demo |
|
|
|
|
|
demo = gradio_interface() |
|
|
demo.launch(debug=True, share=True) |
|
|
|