Update MeloTTS/melo/models.py
Browse files- MeloTTS/melo/models.py +1030 -1030
MeloTTS/melo/models.py
CHANGED
|
@@ -1,1030 +1,1030 @@
|
|
| 1 |
-
import math
|
| 2 |
-
import torch
|
| 3 |
-
from torch import nn
|
| 4 |
-
from torch.nn import functional as F
|
| 5 |
-
|
| 6 |
-
from melo import commons
|
| 7 |
-
from melo import modules
|
| 8 |
-
from melo import attentions
|
| 9 |
-
|
| 10 |
-
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
| 11 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 12 |
-
|
| 13 |
-
from melo.commons import init_weights, get_padding
|
| 14 |
-
import melo.monotonic_align as monotonic_align
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
class DurationDiscriminator(nn.Module): # vits2
|
| 18 |
-
def __init__(
|
| 19 |
-
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
| 20 |
-
):
|
| 21 |
-
super().__init__()
|
| 22 |
-
self.in_channels = in_channels
|
| 23 |
-
self.filter_channels = filter_channels
|
| 24 |
-
self.kernel_size = kernel_size
|
| 25 |
-
self.p_dropout = p_dropout
|
| 26 |
-
self.gin_channels = gin_channels
|
| 27 |
-
|
| 28 |
-
self.drop = nn.Dropout(p_dropout)
|
| 29 |
-
self.conv_1 = nn.Conv1d(
|
| 30 |
-
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 31 |
-
)
|
| 32 |
-
self.norm_1 = modules.LayerNorm(filter_channels)
|
| 33 |
-
self.conv_2 = nn.Conv1d(
|
| 34 |
-
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 35 |
-
)
|
| 36 |
-
self.norm_2 = modules.LayerNorm(filter_channels)
|
| 37 |
-
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
| 38 |
-
|
| 39 |
-
self.pre_out_conv_1 = nn.Conv1d(
|
| 40 |
-
2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 41 |
-
)
|
| 42 |
-
self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
|
| 43 |
-
self.pre_out_conv_2 = nn.Conv1d(
|
| 44 |
-
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 45 |
-
)
|
| 46 |
-
self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
|
| 47 |
-
|
| 48 |
-
if gin_channels != 0:
|
| 49 |
-
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
| 50 |
-
|
| 51 |
-
self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid())
|
| 52 |
-
|
| 53 |
-
def forward_probability(self, x, x_mask, dur, g=None):
|
| 54 |
-
dur = self.dur_proj(dur)
|
| 55 |
-
x = torch.cat([x, dur], dim=1)
|
| 56 |
-
x = self.pre_out_conv_1(x * x_mask)
|
| 57 |
-
x = torch.relu(x)
|
| 58 |
-
x = self.pre_out_norm_1(x)
|
| 59 |
-
x = self.drop(x)
|
| 60 |
-
x = self.pre_out_conv_2(x * x_mask)
|
| 61 |
-
x = torch.relu(x)
|
| 62 |
-
x = self.pre_out_norm_2(x)
|
| 63 |
-
x = self.drop(x)
|
| 64 |
-
x = x * x_mask
|
| 65 |
-
x = x.transpose(1, 2)
|
| 66 |
-
output_prob = self.output_layer(x)
|
| 67 |
-
return output_prob
|
| 68 |
-
|
| 69 |
-
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
| 70 |
-
x = torch.detach(x)
|
| 71 |
-
if g is not None:
|
| 72 |
-
g = torch.detach(g)
|
| 73 |
-
x = x + self.cond(g)
|
| 74 |
-
x = self.conv_1(x * x_mask)
|
| 75 |
-
x = torch.relu(x)
|
| 76 |
-
x = self.norm_1(x)
|
| 77 |
-
x = self.drop(x)
|
| 78 |
-
x = self.conv_2(x * x_mask)
|
| 79 |
-
x = torch.relu(x)
|
| 80 |
-
x = self.norm_2(x)
|
| 81 |
-
x = self.drop(x)
|
| 82 |
-
|
| 83 |
-
output_probs = []
|
| 84 |
-
for dur in [dur_r, dur_hat]:
|
| 85 |
-
output_prob = self.forward_probability(x, x_mask, dur, g)
|
| 86 |
-
output_probs.append(output_prob)
|
| 87 |
-
|
| 88 |
-
return output_probs
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
class TransformerCouplingBlock(nn.Module):
|
| 92 |
-
def __init__(
|
| 93 |
-
self,
|
| 94 |
-
channels,
|
| 95 |
-
hidden_channels,
|
| 96 |
-
filter_channels,
|
| 97 |
-
n_heads,
|
| 98 |
-
n_layers,
|
| 99 |
-
kernel_size,
|
| 100 |
-
p_dropout,
|
| 101 |
-
n_flows=4,
|
| 102 |
-
gin_channels=0,
|
| 103 |
-
share_parameter=False,
|
| 104 |
-
):
|
| 105 |
-
super().__init__()
|
| 106 |
-
self.channels = channels
|
| 107 |
-
self.hidden_channels = hidden_channels
|
| 108 |
-
self.kernel_size = kernel_size
|
| 109 |
-
self.n_layers = n_layers
|
| 110 |
-
self.n_flows = n_flows
|
| 111 |
-
self.gin_channels = gin_channels
|
| 112 |
-
|
| 113 |
-
self.flows = nn.ModuleList()
|
| 114 |
-
|
| 115 |
-
self.wn = (
|
| 116 |
-
attentions.FFT(
|
| 117 |
-
hidden_channels,
|
| 118 |
-
filter_channels,
|
| 119 |
-
n_heads,
|
| 120 |
-
n_layers,
|
| 121 |
-
kernel_size,
|
| 122 |
-
p_dropout,
|
| 123 |
-
isflow=True,
|
| 124 |
-
gin_channels=self.gin_channels,
|
| 125 |
-
)
|
| 126 |
-
if share_parameter
|
| 127 |
-
else None
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
for i in range(n_flows):
|
| 131 |
-
self.flows.append(
|
| 132 |
-
modules.TransformerCouplingLayer(
|
| 133 |
-
channels,
|
| 134 |
-
hidden_channels,
|
| 135 |
-
kernel_size,
|
| 136 |
-
n_layers,
|
| 137 |
-
n_heads,
|
| 138 |
-
p_dropout,
|
| 139 |
-
filter_channels,
|
| 140 |
-
mean_only=True,
|
| 141 |
-
wn_sharing_parameter=self.wn,
|
| 142 |
-
gin_channels=self.gin_channels,
|
| 143 |
-
)
|
| 144 |
-
)
|
| 145 |
-
self.flows.append(modules.Flip())
|
| 146 |
-
|
| 147 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
| 148 |
-
if not reverse:
|
| 149 |
-
for flow in self.flows:
|
| 150 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 151 |
-
else:
|
| 152 |
-
for flow in reversed(self.flows):
|
| 153 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 154 |
-
return x
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
class StochasticDurationPredictor(nn.Module):
|
| 158 |
-
def __init__(
|
| 159 |
-
self,
|
| 160 |
-
in_channels,
|
| 161 |
-
filter_channels,
|
| 162 |
-
kernel_size,
|
| 163 |
-
p_dropout,
|
| 164 |
-
n_flows=4,
|
| 165 |
-
gin_channels=0,
|
| 166 |
-
):
|
| 167 |
-
super().__init__()
|
| 168 |
-
filter_channels = in_channels # it needs to be removed from future version.
|
| 169 |
-
self.in_channels = in_channels
|
| 170 |
-
self.filter_channels = filter_channels
|
| 171 |
-
self.kernel_size = kernel_size
|
| 172 |
-
self.p_dropout = p_dropout
|
| 173 |
-
self.n_flows = n_flows
|
| 174 |
-
self.gin_channels = gin_channels
|
| 175 |
-
|
| 176 |
-
self.log_flow = modules.Log()
|
| 177 |
-
self.flows = nn.ModuleList()
|
| 178 |
-
self.flows.append(modules.ElementwiseAffine(2))
|
| 179 |
-
for i in range(n_flows):
|
| 180 |
-
self.flows.append(
|
| 181 |
-
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
| 182 |
-
)
|
| 183 |
-
self.flows.append(modules.Flip())
|
| 184 |
-
|
| 185 |
-
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
| 186 |
-
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
| 187 |
-
self.post_convs = modules.DDSConv(
|
| 188 |
-
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
| 189 |
-
)
|
| 190 |
-
self.post_flows = nn.ModuleList()
|
| 191 |
-
self.post_flows.append(modules.ElementwiseAffine(2))
|
| 192 |
-
for i in range(4):
|
| 193 |
-
self.post_flows.append(
|
| 194 |
-
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
| 195 |
-
)
|
| 196 |
-
self.post_flows.append(modules.Flip())
|
| 197 |
-
|
| 198 |
-
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
| 199 |
-
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
| 200 |
-
self.convs = modules.DDSConv(
|
| 201 |
-
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
| 202 |
-
)
|
| 203 |
-
if gin_channels != 0:
|
| 204 |
-
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
| 205 |
-
|
| 206 |
-
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
| 207 |
-
x = torch.detach(x)
|
| 208 |
-
x = self.pre(x)
|
| 209 |
-
if g is not None:
|
| 210 |
-
g = torch.detach(g)
|
| 211 |
-
x = x + self.cond(g)
|
| 212 |
-
x = self.convs(x, x_mask)
|
| 213 |
-
x = self.proj(x) * x_mask
|
| 214 |
-
|
| 215 |
-
if not reverse:
|
| 216 |
-
flows = self.flows
|
| 217 |
-
assert w is not None
|
| 218 |
-
|
| 219 |
-
logdet_tot_q = 0
|
| 220 |
-
h_w = self.post_pre(w)
|
| 221 |
-
h_w = self.post_convs(h_w, x_mask)
|
| 222 |
-
h_w = self.post_proj(h_w) * x_mask
|
| 223 |
-
e_q = (
|
| 224 |
-
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
| 225 |
-
* x_mask
|
| 226 |
-
)
|
| 227 |
-
z_q = e_q
|
| 228 |
-
for flow in self.post_flows:
|
| 229 |
-
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
| 230 |
-
logdet_tot_q += logdet_q
|
| 231 |
-
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
| 232 |
-
u = torch.sigmoid(z_u) * x_mask
|
| 233 |
-
z0 = (w - u) * x_mask
|
| 234 |
-
logdet_tot_q += torch.sum(
|
| 235 |
-
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
| 236 |
-
)
|
| 237 |
-
logq = (
|
| 238 |
-
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
| 239 |
-
- logdet_tot_q
|
| 240 |
-
)
|
| 241 |
-
|
| 242 |
-
logdet_tot = 0
|
| 243 |
-
z0, logdet = self.log_flow(z0, x_mask)
|
| 244 |
-
logdet_tot += logdet
|
| 245 |
-
z = torch.cat([z0, z1], 1)
|
| 246 |
-
for flow in flows:
|
| 247 |
-
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
| 248 |
-
logdet_tot = logdet_tot + logdet
|
| 249 |
-
nll = (
|
| 250 |
-
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
| 251 |
-
- logdet_tot
|
| 252 |
-
)
|
| 253 |
-
return nll + logq # [b]
|
| 254 |
-
else:
|
| 255 |
-
flows = list(reversed(self.flows))
|
| 256 |
-
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
| 257 |
-
z = (
|
| 258 |
-
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
| 259 |
-
* noise_scale
|
| 260 |
-
)
|
| 261 |
-
for flow in flows:
|
| 262 |
-
z = flow(z, x_mask, g=x, reverse=reverse)
|
| 263 |
-
z0, z1 = torch.split(z, [1, 1], 1)
|
| 264 |
-
logw = z0
|
| 265 |
-
return logw
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
class DurationPredictor(nn.Module):
|
| 269 |
-
def __init__(
|
| 270 |
-
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
| 271 |
-
):
|
| 272 |
-
super().__init__()
|
| 273 |
-
|
| 274 |
-
self.in_channels = in_channels
|
| 275 |
-
self.filter_channels = filter_channels
|
| 276 |
-
self.kernel_size = kernel_size
|
| 277 |
-
self.p_dropout = p_dropout
|
| 278 |
-
self.gin_channels = gin_channels
|
| 279 |
-
|
| 280 |
-
self.drop = nn.Dropout(p_dropout)
|
| 281 |
-
self.conv_1 = nn.Conv1d(
|
| 282 |
-
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 283 |
-
)
|
| 284 |
-
self.norm_1 = modules.LayerNorm(filter_channels)
|
| 285 |
-
self.conv_2 = nn.Conv1d(
|
| 286 |
-
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 287 |
-
)
|
| 288 |
-
self.norm_2 = modules.LayerNorm(filter_channels)
|
| 289 |
-
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
| 290 |
-
|
| 291 |
-
if gin_channels != 0:
|
| 292 |
-
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
| 293 |
-
|
| 294 |
-
def forward(self, x, x_mask, g=None):
|
| 295 |
-
x = torch.detach(x)
|
| 296 |
-
if g is not None:
|
| 297 |
-
g = torch.detach(g)
|
| 298 |
-
x = x + self.cond(g)
|
| 299 |
-
x = self.conv_1(x * x_mask)
|
| 300 |
-
x = torch.relu(x)
|
| 301 |
-
x = self.norm_1(x)
|
| 302 |
-
x = self.drop(x)
|
| 303 |
-
x = self.conv_2(x * x_mask)
|
| 304 |
-
x = torch.relu(x)
|
| 305 |
-
x = self.norm_2(x)
|
| 306 |
-
x = self.drop(x)
|
| 307 |
-
x = self.proj(x * x_mask)
|
| 308 |
-
return x * x_mask
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
class TextEncoder(nn.Module):
|
| 312 |
-
def __init__(
|
| 313 |
-
self,
|
| 314 |
-
n_vocab,
|
| 315 |
-
out_channels,
|
| 316 |
-
hidden_channels,
|
| 317 |
-
filter_channels,
|
| 318 |
-
n_heads,
|
| 319 |
-
n_layers,
|
| 320 |
-
kernel_size,
|
| 321 |
-
p_dropout,
|
| 322 |
-
gin_channels=0,
|
| 323 |
-
num_languages=None,
|
| 324 |
-
num_tones=None,
|
| 325 |
-
):
|
| 326 |
-
super().__init__()
|
| 327 |
-
if num_languages is None:
|
| 328 |
-
from text import num_languages
|
| 329 |
-
if num_tones is None:
|
| 330 |
-
from text import num_tones
|
| 331 |
-
self.n_vocab = n_vocab
|
| 332 |
-
self.out_channels = out_channels
|
| 333 |
-
self.hidden_channels = hidden_channels
|
| 334 |
-
self.filter_channels = filter_channels
|
| 335 |
-
self.n_heads = n_heads
|
| 336 |
-
self.n_layers = n_layers
|
| 337 |
-
self.kernel_size = kernel_size
|
| 338 |
-
self.p_dropout = p_dropout
|
| 339 |
-
self.gin_channels = gin_channels
|
| 340 |
-
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
| 341 |
-
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
| 342 |
-
self.tone_emb = nn.Embedding(num_tones, hidden_channels)
|
| 343 |
-
nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
|
| 344 |
-
self.language_emb = nn.Embedding(num_languages, hidden_channels)
|
| 345 |
-
nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
|
| 346 |
-
self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
| 347 |
-
self.ja_bert_proj = nn.Conv1d(768, hidden_channels, 1)
|
| 348 |
-
|
| 349 |
-
self.encoder = attentions.Encoder(
|
| 350 |
-
hidden_channels,
|
| 351 |
-
filter_channels,
|
| 352 |
-
n_heads,
|
| 353 |
-
n_layers,
|
| 354 |
-
kernel_size,
|
| 355 |
-
p_dropout,
|
| 356 |
-
gin_channels=self.gin_channels,
|
| 357 |
-
)
|
| 358 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 359 |
-
|
| 360 |
-
def forward(self, x, x_lengths, tone, language, bert, ja_bert, g=None):
|
| 361 |
-
bert_emb = self.bert_proj(bert).transpose(1, 2)
|
| 362 |
-
ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2)
|
| 363 |
-
x = (
|
| 364 |
-
self.emb(x)
|
| 365 |
-
+ self.tone_emb(tone)
|
| 366 |
-
+ self.language_emb(language)
|
| 367 |
-
+ bert_emb
|
| 368 |
-
+ ja_bert_emb
|
| 369 |
-
) * math.sqrt(
|
| 370 |
-
self.hidden_channels
|
| 371 |
-
) # [b, t, h]
|
| 372 |
-
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 373 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
| 374 |
-
x.dtype
|
| 375 |
-
)
|
| 376 |
-
|
| 377 |
-
x = self.encoder(x * x_mask, x_mask, g=g)
|
| 378 |
-
stats = self.proj(x) * x_mask
|
| 379 |
-
|
| 380 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 381 |
-
return x, m, logs, x_mask
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
class ResidualCouplingBlock(nn.Module):
|
| 385 |
-
def __init__(
|
| 386 |
-
self,
|
| 387 |
-
channels,
|
| 388 |
-
hidden_channels,
|
| 389 |
-
kernel_size,
|
| 390 |
-
dilation_rate,
|
| 391 |
-
n_layers,
|
| 392 |
-
n_flows=4,
|
| 393 |
-
gin_channels=0,
|
| 394 |
-
):
|
| 395 |
-
super().__init__()
|
| 396 |
-
self.channels = channels
|
| 397 |
-
self.hidden_channels = hidden_channels
|
| 398 |
-
self.kernel_size = kernel_size
|
| 399 |
-
self.dilation_rate = dilation_rate
|
| 400 |
-
self.n_layers = n_layers
|
| 401 |
-
self.n_flows = n_flows
|
| 402 |
-
self.gin_channels = gin_channels
|
| 403 |
-
|
| 404 |
-
self.flows = nn.ModuleList()
|
| 405 |
-
for i in range(n_flows):
|
| 406 |
-
self.flows.append(
|
| 407 |
-
modules.ResidualCouplingLayer(
|
| 408 |
-
channels,
|
| 409 |
-
hidden_channels,
|
| 410 |
-
kernel_size,
|
| 411 |
-
dilation_rate,
|
| 412 |
-
n_layers,
|
| 413 |
-
gin_channels=gin_channels,
|
| 414 |
-
mean_only=True,
|
| 415 |
-
)
|
| 416 |
-
)
|
| 417 |
-
self.flows.append(modules.Flip())
|
| 418 |
-
|
| 419 |
-
def forward(self, x, x_mask, g=None, reverse=False):
|
| 420 |
-
if not reverse:
|
| 421 |
-
for flow in self.flows:
|
| 422 |
-
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 423 |
-
else:
|
| 424 |
-
for flow in reversed(self.flows):
|
| 425 |
-
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 426 |
-
return x
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
class PosteriorEncoder(nn.Module):
|
| 430 |
-
def __init__(
|
| 431 |
-
self,
|
| 432 |
-
in_channels,
|
| 433 |
-
out_channels,
|
| 434 |
-
hidden_channels,
|
| 435 |
-
kernel_size,
|
| 436 |
-
dilation_rate,
|
| 437 |
-
n_layers,
|
| 438 |
-
gin_channels=0,
|
| 439 |
-
):
|
| 440 |
-
super().__init__()
|
| 441 |
-
self.in_channels = in_channels
|
| 442 |
-
self.out_channels = out_channels
|
| 443 |
-
self.hidden_channels = hidden_channels
|
| 444 |
-
self.kernel_size = kernel_size
|
| 445 |
-
self.dilation_rate = dilation_rate
|
| 446 |
-
self.n_layers = n_layers
|
| 447 |
-
self.gin_channels = gin_channels
|
| 448 |
-
|
| 449 |
-
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 450 |
-
self.enc = modules.WN(
|
| 451 |
-
hidden_channels,
|
| 452 |
-
kernel_size,
|
| 453 |
-
dilation_rate,
|
| 454 |
-
n_layers,
|
| 455 |
-
gin_channels=gin_channels,
|
| 456 |
-
)
|
| 457 |
-
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 458 |
-
|
| 459 |
-
def forward(self, x, x_lengths, g=None, tau=1.0):
|
| 460 |
-
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
| 461 |
-
x.dtype
|
| 462 |
-
)
|
| 463 |
-
x = self.pre(x) * x_mask
|
| 464 |
-
x = self.enc(x, x_mask, g=g)
|
| 465 |
-
stats = self.proj(x) * x_mask
|
| 466 |
-
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 467 |
-
z = (m + torch.randn_like(m) * tau * torch.exp(logs)) * x_mask
|
| 468 |
-
return z, m, logs, x_mask
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
class Generator(torch.nn.Module):
|
| 472 |
-
def __init__(
|
| 473 |
-
self,
|
| 474 |
-
initial_channel,
|
| 475 |
-
resblock,
|
| 476 |
-
resblock_kernel_sizes,
|
| 477 |
-
resblock_dilation_sizes,
|
| 478 |
-
upsample_rates,
|
| 479 |
-
upsample_initial_channel,
|
| 480 |
-
upsample_kernel_sizes,
|
| 481 |
-
gin_channels=0,
|
| 482 |
-
):
|
| 483 |
-
super(Generator, self).__init__()
|
| 484 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
| 485 |
-
self.num_upsamples = len(upsample_rates)
|
| 486 |
-
self.conv_pre = Conv1d(
|
| 487 |
-
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 488 |
-
)
|
| 489 |
-
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 490 |
-
|
| 491 |
-
self.ups = nn.ModuleList()
|
| 492 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 493 |
-
self.ups.append(
|
| 494 |
-
weight_norm(
|
| 495 |
-
ConvTranspose1d(
|
| 496 |
-
upsample_initial_channel // (2**i),
|
| 497 |
-
upsample_initial_channel // (2 ** (i + 1)),
|
| 498 |
-
k,
|
| 499 |
-
u,
|
| 500 |
-
padding=(k - u) // 2,
|
| 501 |
-
)
|
| 502 |
-
)
|
| 503 |
-
)
|
| 504 |
-
|
| 505 |
-
self.resblocks = nn.ModuleList()
|
| 506 |
-
for i in range(len(self.ups)):
|
| 507 |
-
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 508 |
-
for j, (k, d) in enumerate(
|
| 509 |
-
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 510 |
-
):
|
| 511 |
-
self.resblocks.append(resblock(ch, k, d))
|
| 512 |
-
|
| 513 |
-
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 514 |
-
self.ups.apply(init_weights)
|
| 515 |
-
|
| 516 |
-
if gin_channels != 0:
|
| 517 |
-
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 518 |
-
|
| 519 |
-
def forward(self, x, g=None):
|
| 520 |
-
x = self.conv_pre(x)
|
| 521 |
-
if g is not None:
|
| 522 |
-
x = x + self.cond(g)
|
| 523 |
-
|
| 524 |
-
for i in range(self.num_upsamples):
|
| 525 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 526 |
-
x = self.ups[i](x)
|
| 527 |
-
xs = None
|
| 528 |
-
for j in range(self.num_kernels):
|
| 529 |
-
if xs is None:
|
| 530 |
-
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 531 |
-
else:
|
| 532 |
-
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 533 |
-
x = xs / self.num_kernels
|
| 534 |
-
x = F.leaky_relu(x)
|
| 535 |
-
x = self.conv_post(x)
|
| 536 |
-
x = torch.tanh(x)
|
| 537 |
-
|
| 538 |
-
return x
|
| 539 |
-
|
| 540 |
-
def remove_weight_norm(self):
|
| 541 |
-
print("Removing weight norm...")
|
| 542 |
-
for layer in self.ups:
|
| 543 |
-
remove_weight_norm(layer)
|
| 544 |
-
for layer in self.resblocks:
|
| 545 |
-
layer.remove_weight_norm()
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
class DiscriminatorP(torch.nn.Module):
|
| 549 |
-
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 550 |
-
super(DiscriminatorP, self).__init__()
|
| 551 |
-
self.period = period
|
| 552 |
-
self.use_spectral_norm = use_spectral_norm
|
| 553 |
-
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
| 554 |
-
self.convs = nn.ModuleList(
|
| 555 |
-
[
|
| 556 |
-
norm_f(
|
| 557 |
-
Conv2d(
|
| 558 |
-
1,
|
| 559 |
-
32,
|
| 560 |
-
(kernel_size, 1),
|
| 561 |
-
(stride, 1),
|
| 562 |
-
padding=(get_padding(kernel_size, 1), 0),
|
| 563 |
-
)
|
| 564 |
-
),
|
| 565 |
-
norm_f(
|
| 566 |
-
Conv2d(
|
| 567 |
-
32,
|
| 568 |
-
128,
|
| 569 |
-
(kernel_size, 1),
|
| 570 |
-
(stride, 1),
|
| 571 |
-
padding=(get_padding(kernel_size, 1), 0),
|
| 572 |
-
)
|
| 573 |
-
),
|
| 574 |
-
norm_f(
|
| 575 |
-
Conv2d(
|
| 576 |
-
128,
|
| 577 |
-
512,
|
| 578 |
-
(kernel_size, 1),
|
| 579 |
-
(stride, 1),
|
| 580 |
-
padding=(get_padding(kernel_size, 1), 0),
|
| 581 |
-
)
|
| 582 |
-
),
|
| 583 |
-
norm_f(
|
| 584 |
-
Conv2d(
|
| 585 |
-
512,
|
| 586 |
-
1024,
|
| 587 |
-
(kernel_size, 1),
|
| 588 |
-
(stride, 1),
|
| 589 |
-
padding=(get_padding(kernel_size, 1), 0),
|
| 590 |
-
)
|
| 591 |
-
),
|
| 592 |
-
norm_f(
|
| 593 |
-
Conv2d(
|
| 594 |
-
1024,
|
| 595 |
-
1024,
|
| 596 |
-
(kernel_size, 1),
|
| 597 |
-
1,
|
| 598 |
-
padding=(get_padding(kernel_size, 1), 0),
|
| 599 |
-
)
|
| 600 |
-
),
|
| 601 |
-
]
|
| 602 |
-
)
|
| 603 |
-
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 604 |
-
|
| 605 |
-
def forward(self, x):
|
| 606 |
-
fmap = []
|
| 607 |
-
|
| 608 |
-
# 1d to 2d
|
| 609 |
-
b, c, t = x.shape
|
| 610 |
-
if t % self.period != 0: # pad first
|
| 611 |
-
n_pad = self.period - (t % self.period)
|
| 612 |
-
x = F.pad(x, (0, n_pad), "reflect")
|
| 613 |
-
t = t + n_pad
|
| 614 |
-
x = x.view(b, c, t // self.period, self.period)
|
| 615 |
-
|
| 616 |
-
for layer in self.convs:
|
| 617 |
-
x = layer(x)
|
| 618 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 619 |
-
fmap.append(x)
|
| 620 |
-
x = self.conv_post(x)
|
| 621 |
-
fmap.append(x)
|
| 622 |
-
x = torch.flatten(x, 1, -1)
|
| 623 |
-
|
| 624 |
-
return x, fmap
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
class DiscriminatorS(torch.nn.Module):
|
| 628 |
-
def __init__(self, use_spectral_norm=False):
|
| 629 |
-
super(DiscriminatorS, self).__init__()
|
| 630 |
-
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
| 631 |
-
self.convs = nn.ModuleList(
|
| 632 |
-
[
|
| 633 |
-
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
| 634 |
-
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
| 635 |
-
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
| 636 |
-
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
| 637 |
-
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
| 638 |
-
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 639 |
-
]
|
| 640 |
-
)
|
| 641 |
-
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 642 |
-
|
| 643 |
-
def forward(self, x):
|
| 644 |
-
fmap = []
|
| 645 |
-
|
| 646 |
-
for layer in self.convs:
|
| 647 |
-
x = layer(x)
|
| 648 |
-
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 649 |
-
fmap.append(x)
|
| 650 |
-
x = self.conv_post(x)
|
| 651 |
-
fmap.append(x)
|
| 652 |
-
x = torch.flatten(x, 1, -1)
|
| 653 |
-
|
| 654 |
-
return x, fmap
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 658 |
-
def __init__(self, use_spectral_norm=False):
|
| 659 |
-
super(MultiPeriodDiscriminator, self).__init__()
|
| 660 |
-
periods = [2, 3, 5, 7, 11]
|
| 661 |
-
|
| 662 |
-
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 663 |
-
discs = discs + [
|
| 664 |
-
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
| 665 |
-
]
|
| 666 |
-
self.discriminators = nn.ModuleList(discs)
|
| 667 |
-
|
| 668 |
-
def forward(self, y, y_hat):
|
| 669 |
-
y_d_rs = []
|
| 670 |
-
y_d_gs = []
|
| 671 |
-
fmap_rs = []
|
| 672 |
-
fmap_gs = []
|
| 673 |
-
for i, d in enumerate(self.discriminators):
|
| 674 |
-
y_d_r, fmap_r = d(y)
|
| 675 |
-
y_d_g, fmap_g = d(y_hat)
|
| 676 |
-
y_d_rs.append(y_d_r)
|
| 677 |
-
y_d_gs.append(y_d_g)
|
| 678 |
-
fmap_rs.append(fmap_r)
|
| 679 |
-
fmap_gs.append(fmap_g)
|
| 680 |
-
|
| 681 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
class ReferenceEncoder(nn.Module):
|
| 685 |
-
"""
|
| 686 |
-
inputs --- [N, Ty/r, n_mels*r] mels
|
| 687 |
-
outputs --- [N, ref_enc_gru_size]
|
| 688 |
-
"""
|
| 689 |
-
|
| 690 |
-
def __init__(self, spec_channels, gin_channels=0, layernorm=False):
|
| 691 |
-
super().__init__()
|
| 692 |
-
self.spec_channels = spec_channels
|
| 693 |
-
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
| 694 |
-
K = len(ref_enc_filters)
|
| 695 |
-
filters = [1] + ref_enc_filters
|
| 696 |
-
convs = [
|
| 697 |
-
weight_norm(
|
| 698 |
-
nn.Conv2d(
|
| 699 |
-
in_channels=filters[i],
|
| 700 |
-
out_channels=filters[i + 1],
|
| 701 |
-
kernel_size=(3, 3),
|
| 702 |
-
stride=(2, 2),
|
| 703 |
-
padding=(1, 1),
|
| 704 |
-
)
|
| 705 |
-
)
|
| 706 |
-
for i in range(K)
|
| 707 |
-
]
|
| 708 |
-
self.convs = nn.ModuleList(convs)
|
| 709 |
-
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) # noqa: E501
|
| 710 |
-
|
| 711 |
-
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
| 712 |
-
self.gru = nn.GRU(
|
| 713 |
-
input_size=ref_enc_filters[-1] * out_channels,
|
| 714 |
-
hidden_size=256 // 2,
|
| 715 |
-
batch_first=True,
|
| 716 |
-
)
|
| 717 |
-
self.proj = nn.Linear(128, gin_channels)
|
| 718 |
-
if layernorm:
|
| 719 |
-
self.layernorm = nn.LayerNorm(self.spec_channels)
|
| 720 |
-
print('[Ref Enc]: using layer norm')
|
| 721 |
-
else:
|
| 722 |
-
self.layernorm = None
|
| 723 |
-
|
| 724 |
-
def forward(self, inputs, mask=None):
|
| 725 |
-
N = inputs.size(0)
|
| 726 |
-
|
| 727 |
-
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
| 728 |
-
if self.layernorm is not None:
|
| 729 |
-
out = self.layernorm(out)
|
| 730 |
-
|
| 731 |
-
for conv in self.convs:
|
| 732 |
-
out = conv(out)
|
| 733 |
-
# out = wn(out)
|
| 734 |
-
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
| 735 |
-
|
| 736 |
-
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
| 737 |
-
T = out.size(1)
|
| 738 |
-
N = out.size(0)
|
| 739 |
-
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
| 740 |
-
|
| 741 |
-
self.gru.flatten_parameters()
|
| 742 |
-
memory, out = self.gru(out) # out --- [1, N, 128]
|
| 743 |
-
|
| 744 |
-
return self.proj(out.squeeze(0))
|
| 745 |
-
|
| 746 |
-
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
| 747 |
-
for i in range(n_convs):
|
| 748 |
-
L = (L - kernel_size + 2 * pad) // stride + 1
|
| 749 |
-
return L
|
| 750 |
-
|
| 751 |
-
|
| 752 |
-
class SynthesizerTrn(nn.Module):
|
| 753 |
-
"""
|
| 754 |
-
Synthesizer for Training
|
| 755 |
-
"""
|
| 756 |
-
|
| 757 |
-
def __init__(
|
| 758 |
-
self,
|
| 759 |
-
n_vocab,
|
| 760 |
-
spec_channels,
|
| 761 |
-
segment_size,
|
| 762 |
-
inter_channels,
|
| 763 |
-
hidden_channels,
|
| 764 |
-
filter_channels,
|
| 765 |
-
n_heads,
|
| 766 |
-
n_layers,
|
| 767 |
-
kernel_size,
|
| 768 |
-
p_dropout,
|
| 769 |
-
resblock,
|
| 770 |
-
resblock_kernel_sizes,
|
| 771 |
-
resblock_dilation_sizes,
|
| 772 |
-
upsample_rates,
|
| 773 |
-
upsample_initial_channel,
|
| 774 |
-
upsample_kernel_sizes,
|
| 775 |
-
n_speakers=256,
|
| 776 |
-
gin_channels=256,
|
| 777 |
-
use_sdp=True,
|
| 778 |
-
n_flow_layer=4,
|
| 779 |
-
n_layers_trans_flow=6,
|
| 780 |
-
flow_share_parameter=False,
|
| 781 |
-
use_transformer_flow=True,
|
| 782 |
-
use_vc=False,
|
| 783 |
-
num_languages=None,
|
| 784 |
-
num_tones=None,
|
| 785 |
-
norm_refenc=False,
|
| 786 |
-
**kwargs
|
| 787 |
-
):
|
| 788 |
-
super().__init__()
|
| 789 |
-
self.n_vocab = n_vocab
|
| 790 |
-
self.spec_channels = spec_channels
|
| 791 |
-
self.inter_channels = inter_channels
|
| 792 |
-
self.hidden_channels = hidden_channels
|
| 793 |
-
self.filter_channels = filter_channels
|
| 794 |
-
self.n_heads = n_heads
|
| 795 |
-
self.n_layers = n_layers
|
| 796 |
-
self.kernel_size = kernel_size
|
| 797 |
-
self.p_dropout = p_dropout
|
| 798 |
-
self.resblock = resblock
|
| 799 |
-
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 800 |
-
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 801 |
-
self.upsample_rates = upsample_rates
|
| 802 |
-
self.upsample_initial_channel = upsample_initial_channel
|
| 803 |
-
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 804 |
-
self.segment_size = segment_size
|
| 805 |
-
self.n_speakers = n_speakers
|
| 806 |
-
self.gin_channels = gin_channels
|
| 807 |
-
self.n_layers_trans_flow = n_layers_trans_flow
|
| 808 |
-
self.use_spk_conditioned_encoder = kwargs.get(
|
| 809 |
-
"use_spk_conditioned_encoder", True
|
| 810 |
-
)
|
| 811 |
-
self.use_sdp = use_sdp
|
| 812 |
-
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
| 813 |
-
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
| 814 |
-
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
| 815 |
-
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
| 816 |
-
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
| 817 |
-
self.enc_gin_channels = gin_channels
|
| 818 |
-
else:
|
| 819 |
-
self.enc_gin_channels = 0
|
| 820 |
-
self.enc_p = TextEncoder(
|
| 821 |
-
n_vocab,
|
| 822 |
-
inter_channels,
|
| 823 |
-
hidden_channels,
|
| 824 |
-
filter_channels,
|
| 825 |
-
n_heads,
|
| 826 |
-
n_layers,
|
| 827 |
-
kernel_size,
|
| 828 |
-
p_dropout,
|
| 829 |
-
gin_channels=self.enc_gin_channels,
|
| 830 |
-
num_languages=num_languages,
|
| 831 |
-
num_tones=num_tones,
|
| 832 |
-
)
|
| 833 |
-
self.dec = Generator(
|
| 834 |
-
inter_channels,
|
| 835 |
-
resblock,
|
| 836 |
-
resblock_kernel_sizes,
|
| 837 |
-
resblock_dilation_sizes,
|
| 838 |
-
upsample_rates,
|
| 839 |
-
upsample_initial_channel,
|
| 840 |
-
upsample_kernel_sizes,
|
| 841 |
-
gin_channels=gin_channels,
|
| 842 |
-
)
|
| 843 |
-
self.enc_q = PosteriorEncoder(
|
| 844 |
-
spec_channels,
|
| 845 |
-
inter_channels,
|
| 846 |
-
hidden_channels,
|
| 847 |
-
5,
|
| 848 |
-
1,
|
| 849 |
-
16,
|
| 850 |
-
gin_channels=gin_channels,
|
| 851 |
-
)
|
| 852 |
-
if use_transformer_flow:
|
| 853 |
-
self.flow = TransformerCouplingBlock(
|
| 854 |
-
inter_channels,
|
| 855 |
-
hidden_channels,
|
| 856 |
-
filter_channels,
|
| 857 |
-
n_heads,
|
| 858 |
-
n_layers_trans_flow,
|
| 859 |
-
5,
|
| 860 |
-
p_dropout,
|
| 861 |
-
n_flow_layer,
|
| 862 |
-
gin_channels=gin_channels,
|
| 863 |
-
share_parameter=flow_share_parameter,
|
| 864 |
-
)
|
| 865 |
-
else:
|
| 866 |
-
self.flow = ResidualCouplingBlock(
|
| 867 |
-
inter_channels,
|
| 868 |
-
hidden_channels,
|
| 869 |
-
5,
|
| 870 |
-
1,
|
| 871 |
-
n_flow_layer,
|
| 872 |
-
gin_channels=gin_channels,
|
| 873 |
-
)
|
| 874 |
-
self.sdp = StochasticDurationPredictor(
|
| 875 |
-
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
|
| 876 |
-
)
|
| 877 |
-
self.dp = DurationPredictor(
|
| 878 |
-
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
|
| 879 |
-
)
|
| 880 |
-
|
| 881 |
-
if n_speakers > 0:
|
| 882 |
-
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
| 883 |
-
else:
|
| 884 |
-
self.ref_enc = ReferenceEncoder(spec_channels, gin_channels, layernorm=norm_refenc)
|
| 885 |
-
self.use_vc = use_vc
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert, ja_bert):
|
| 889 |
-
if self.n_speakers > 0:
|
| 890 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 891 |
-
else:
|
| 892 |
-
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
| 893 |
-
if self.use_vc:
|
| 894 |
-
g_p = None
|
| 895 |
-
else:
|
| 896 |
-
g_p = g
|
| 897 |
-
x, m_p, logs_p, x_mask = self.enc_p(
|
| 898 |
-
x, x_lengths, tone, language, bert, ja_bert, g=g_p
|
| 899 |
-
)
|
| 900 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 901 |
-
z_p = self.flow(z, y_mask, g=g)
|
| 902 |
-
|
| 903 |
-
with torch.no_grad():
|
| 904 |
-
# negative cross-entropy
|
| 905 |
-
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
| 906 |
-
neg_cent1 = torch.sum(
|
| 907 |
-
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
|
| 908 |
-
) # [b, 1, t_s]
|
| 909 |
-
neg_cent2 = torch.matmul(
|
| 910 |
-
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
|
| 911 |
-
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
| 912 |
-
neg_cent3 = torch.matmul(
|
| 913 |
-
z_p.transpose(1, 2), (m_p * s_p_sq_r)
|
| 914 |
-
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
| 915 |
-
neg_cent4 = torch.sum(
|
| 916 |
-
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
|
| 917 |
-
) # [b, 1, t_s]
|
| 918 |
-
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
| 919 |
-
if self.use_noise_scaled_mas:
|
| 920 |
-
epsilon = (
|
| 921 |
-
torch.std(neg_cent)
|
| 922 |
-
* torch.randn_like(neg_cent)
|
| 923 |
-
* self.current_mas_noise_scale
|
| 924 |
-
)
|
| 925 |
-
neg_cent = neg_cent + epsilon
|
| 926 |
-
|
| 927 |
-
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 928 |
-
attn = (
|
| 929 |
-
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
|
| 930 |
-
.unsqueeze(1)
|
| 931 |
-
.detach()
|
| 932 |
-
)
|
| 933 |
-
|
| 934 |
-
w = attn.sum(2)
|
| 935 |
-
|
| 936 |
-
l_length_sdp = self.sdp(x, x_mask, w, g=g)
|
| 937 |
-
l_length_sdp = l_length_sdp / torch.sum(x_mask)
|
| 938 |
-
|
| 939 |
-
logw_ = torch.log(w + 1e-6) * x_mask
|
| 940 |
-
logw = self.dp(x, x_mask, g=g)
|
| 941 |
-
l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
|
| 942 |
-
x_mask
|
| 943 |
-
) # for averaging
|
| 944 |
-
|
| 945 |
-
l_length = l_length_dp + l_length_sdp
|
| 946 |
-
|
| 947 |
-
# expand prior
|
| 948 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
| 949 |
-
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
| 950 |
-
|
| 951 |
-
z_slice, ids_slice = commons.rand_slice_segments(
|
| 952 |
-
z, y_lengths, self.segment_size
|
| 953 |
-
)
|
| 954 |
-
o = self.dec(z_slice, g=g)
|
| 955 |
-
return (
|
| 956 |
-
o,
|
| 957 |
-
l_length,
|
| 958 |
-
attn,
|
| 959 |
-
ids_slice,
|
| 960 |
-
x_mask,
|
| 961 |
-
y_mask,
|
| 962 |
-
(z, z_p, m_p, logs_p, m_q, logs_q),
|
| 963 |
-
(x, logw, logw_),
|
| 964 |
-
)
|
| 965 |
-
|
| 966 |
-
def infer(
|
| 967 |
-
self,
|
| 968 |
-
x,
|
| 969 |
-
x_lengths,
|
| 970 |
-
sid,
|
| 971 |
-
tone,
|
| 972 |
-
language,
|
| 973 |
-
bert,
|
| 974 |
-
ja_bert,
|
| 975 |
-
noise_scale=0.667,
|
| 976 |
-
length_scale=1,
|
| 977 |
-
noise_scale_w=0.8,
|
| 978 |
-
max_len=None,
|
| 979 |
-
sdp_ratio=0,
|
| 980 |
-
y=None,
|
| 981 |
-
g=None,
|
| 982 |
-
):
|
| 983 |
-
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
|
| 984 |
-
# g = self.gst(y)
|
| 985 |
-
if g is None:
|
| 986 |
-
if self.n_speakers > 0:
|
| 987 |
-
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 988 |
-
else:
|
| 989 |
-
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
| 990 |
-
if self.use_vc:
|
| 991 |
-
g_p = None
|
| 992 |
-
else:
|
| 993 |
-
g_p = g
|
| 994 |
-
x, m_p, logs_p, x_mask = self.enc_p(
|
| 995 |
-
x, x_lengths, tone, language, bert, ja_bert, g=g_p
|
| 996 |
-
)
|
| 997 |
-
logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
|
| 998 |
-
sdp_ratio
|
| 999 |
-
) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
|
| 1000 |
-
w = torch.exp(logw) * x_mask * length_scale
|
| 1001 |
-
|
| 1002 |
-
w_ceil = torch.ceil(w)
|
| 1003 |
-
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
| 1004 |
-
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
|
| 1005 |
-
x_mask.dtype
|
| 1006 |
-
)
|
| 1007 |
-
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 1008 |
-
attn = commons.generate_path(w_ceil, attn_mask)
|
| 1009 |
-
|
| 1010 |
-
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
| 1011 |
-
1, 2
|
| 1012 |
-
) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 1013 |
-
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
|
| 1014 |
-
1, 2
|
| 1015 |
-
) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 1016 |
-
|
| 1017 |
-
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
| 1018 |
-
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
| 1019 |
-
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
| 1020 |
-
# print('max/min of o:', o.max(), o.min())
|
| 1021 |
-
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
| 1022 |
-
|
| 1023 |
-
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt, tau=1.0):
|
| 1024 |
-
g_src = sid_src
|
| 1025 |
-
g_tgt = sid_tgt
|
| 1026 |
-
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src, tau=tau)
|
| 1027 |
-
z_p = self.flow(z, y_mask, g=g_src)
|
| 1028 |
-
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
| 1029 |
-
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
| 1030 |
-
return o_hat, y_mask, (z, z_p, z_hat)
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from torch.nn import functional as F
|
| 5 |
+
|
| 6 |
+
from MeloTTS.melo import commons
|
| 7 |
+
from MeloTTS.melo import modules
|
| 8 |
+
from MeloTTS.melo import attentions
|
| 9 |
+
|
| 10 |
+
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
| 11 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 12 |
+
|
| 13 |
+
from MeloTTS.melo.commons import init_weights, get_padding
|
| 14 |
+
import MeloTTS.melo.monotonic_align as monotonic_align
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class DurationDiscriminator(nn.Module): # vits2
|
| 18 |
+
def __init__(
|
| 19 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
| 20 |
+
):
|
| 21 |
+
super().__init__()
|
| 22 |
+
self.in_channels = in_channels
|
| 23 |
+
self.filter_channels = filter_channels
|
| 24 |
+
self.kernel_size = kernel_size
|
| 25 |
+
self.p_dropout = p_dropout
|
| 26 |
+
self.gin_channels = gin_channels
|
| 27 |
+
|
| 28 |
+
self.drop = nn.Dropout(p_dropout)
|
| 29 |
+
self.conv_1 = nn.Conv1d(
|
| 30 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 31 |
+
)
|
| 32 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
| 33 |
+
self.conv_2 = nn.Conv1d(
|
| 34 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 35 |
+
)
|
| 36 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
| 37 |
+
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
| 38 |
+
|
| 39 |
+
self.pre_out_conv_1 = nn.Conv1d(
|
| 40 |
+
2 * filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 41 |
+
)
|
| 42 |
+
self.pre_out_norm_1 = modules.LayerNorm(filter_channels)
|
| 43 |
+
self.pre_out_conv_2 = nn.Conv1d(
|
| 44 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 45 |
+
)
|
| 46 |
+
self.pre_out_norm_2 = modules.LayerNorm(filter_channels)
|
| 47 |
+
|
| 48 |
+
if gin_channels != 0:
|
| 49 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
| 50 |
+
|
| 51 |
+
self.output_layer = nn.Sequential(nn.Linear(filter_channels, 1), nn.Sigmoid())
|
| 52 |
+
|
| 53 |
+
def forward_probability(self, x, x_mask, dur, g=None):
|
| 54 |
+
dur = self.dur_proj(dur)
|
| 55 |
+
x = torch.cat([x, dur], dim=1)
|
| 56 |
+
x = self.pre_out_conv_1(x * x_mask)
|
| 57 |
+
x = torch.relu(x)
|
| 58 |
+
x = self.pre_out_norm_1(x)
|
| 59 |
+
x = self.drop(x)
|
| 60 |
+
x = self.pre_out_conv_2(x * x_mask)
|
| 61 |
+
x = torch.relu(x)
|
| 62 |
+
x = self.pre_out_norm_2(x)
|
| 63 |
+
x = self.drop(x)
|
| 64 |
+
x = x * x_mask
|
| 65 |
+
x = x.transpose(1, 2)
|
| 66 |
+
output_prob = self.output_layer(x)
|
| 67 |
+
return output_prob
|
| 68 |
+
|
| 69 |
+
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
| 70 |
+
x = torch.detach(x)
|
| 71 |
+
if g is not None:
|
| 72 |
+
g = torch.detach(g)
|
| 73 |
+
x = x + self.cond(g)
|
| 74 |
+
x = self.conv_1(x * x_mask)
|
| 75 |
+
x = torch.relu(x)
|
| 76 |
+
x = self.norm_1(x)
|
| 77 |
+
x = self.drop(x)
|
| 78 |
+
x = self.conv_2(x * x_mask)
|
| 79 |
+
x = torch.relu(x)
|
| 80 |
+
x = self.norm_2(x)
|
| 81 |
+
x = self.drop(x)
|
| 82 |
+
|
| 83 |
+
output_probs = []
|
| 84 |
+
for dur in [dur_r, dur_hat]:
|
| 85 |
+
output_prob = self.forward_probability(x, x_mask, dur, g)
|
| 86 |
+
output_probs.append(output_prob)
|
| 87 |
+
|
| 88 |
+
return output_probs
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class TransformerCouplingBlock(nn.Module):
|
| 92 |
+
def __init__(
|
| 93 |
+
self,
|
| 94 |
+
channels,
|
| 95 |
+
hidden_channels,
|
| 96 |
+
filter_channels,
|
| 97 |
+
n_heads,
|
| 98 |
+
n_layers,
|
| 99 |
+
kernel_size,
|
| 100 |
+
p_dropout,
|
| 101 |
+
n_flows=4,
|
| 102 |
+
gin_channels=0,
|
| 103 |
+
share_parameter=False,
|
| 104 |
+
):
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.channels = channels
|
| 107 |
+
self.hidden_channels = hidden_channels
|
| 108 |
+
self.kernel_size = kernel_size
|
| 109 |
+
self.n_layers = n_layers
|
| 110 |
+
self.n_flows = n_flows
|
| 111 |
+
self.gin_channels = gin_channels
|
| 112 |
+
|
| 113 |
+
self.flows = nn.ModuleList()
|
| 114 |
+
|
| 115 |
+
self.wn = (
|
| 116 |
+
attentions.FFT(
|
| 117 |
+
hidden_channels,
|
| 118 |
+
filter_channels,
|
| 119 |
+
n_heads,
|
| 120 |
+
n_layers,
|
| 121 |
+
kernel_size,
|
| 122 |
+
p_dropout,
|
| 123 |
+
isflow=True,
|
| 124 |
+
gin_channels=self.gin_channels,
|
| 125 |
+
)
|
| 126 |
+
if share_parameter
|
| 127 |
+
else None
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
for i in range(n_flows):
|
| 131 |
+
self.flows.append(
|
| 132 |
+
modules.TransformerCouplingLayer(
|
| 133 |
+
channels,
|
| 134 |
+
hidden_channels,
|
| 135 |
+
kernel_size,
|
| 136 |
+
n_layers,
|
| 137 |
+
n_heads,
|
| 138 |
+
p_dropout,
|
| 139 |
+
filter_channels,
|
| 140 |
+
mean_only=True,
|
| 141 |
+
wn_sharing_parameter=self.wn,
|
| 142 |
+
gin_channels=self.gin_channels,
|
| 143 |
+
)
|
| 144 |
+
)
|
| 145 |
+
self.flows.append(modules.Flip())
|
| 146 |
+
|
| 147 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 148 |
+
if not reverse:
|
| 149 |
+
for flow in self.flows:
|
| 150 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 151 |
+
else:
|
| 152 |
+
for flow in reversed(self.flows):
|
| 153 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 154 |
+
return x
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
class StochasticDurationPredictor(nn.Module):
|
| 158 |
+
def __init__(
|
| 159 |
+
self,
|
| 160 |
+
in_channels,
|
| 161 |
+
filter_channels,
|
| 162 |
+
kernel_size,
|
| 163 |
+
p_dropout,
|
| 164 |
+
n_flows=4,
|
| 165 |
+
gin_channels=0,
|
| 166 |
+
):
|
| 167 |
+
super().__init__()
|
| 168 |
+
filter_channels = in_channels # it needs to be removed from future version.
|
| 169 |
+
self.in_channels = in_channels
|
| 170 |
+
self.filter_channels = filter_channels
|
| 171 |
+
self.kernel_size = kernel_size
|
| 172 |
+
self.p_dropout = p_dropout
|
| 173 |
+
self.n_flows = n_flows
|
| 174 |
+
self.gin_channels = gin_channels
|
| 175 |
+
|
| 176 |
+
self.log_flow = modules.Log()
|
| 177 |
+
self.flows = nn.ModuleList()
|
| 178 |
+
self.flows.append(modules.ElementwiseAffine(2))
|
| 179 |
+
for i in range(n_flows):
|
| 180 |
+
self.flows.append(
|
| 181 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
| 182 |
+
)
|
| 183 |
+
self.flows.append(modules.Flip())
|
| 184 |
+
|
| 185 |
+
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
| 186 |
+
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
| 187 |
+
self.post_convs = modules.DDSConv(
|
| 188 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
| 189 |
+
)
|
| 190 |
+
self.post_flows = nn.ModuleList()
|
| 191 |
+
self.post_flows.append(modules.ElementwiseAffine(2))
|
| 192 |
+
for i in range(4):
|
| 193 |
+
self.post_flows.append(
|
| 194 |
+
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
| 195 |
+
)
|
| 196 |
+
self.post_flows.append(modules.Flip())
|
| 197 |
+
|
| 198 |
+
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
| 199 |
+
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
| 200 |
+
self.convs = modules.DDSConv(
|
| 201 |
+
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
| 202 |
+
)
|
| 203 |
+
if gin_channels != 0:
|
| 204 |
+
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
| 205 |
+
|
| 206 |
+
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
| 207 |
+
x = torch.detach(x)
|
| 208 |
+
x = self.pre(x)
|
| 209 |
+
if g is not None:
|
| 210 |
+
g = torch.detach(g)
|
| 211 |
+
x = x + self.cond(g)
|
| 212 |
+
x = self.convs(x, x_mask)
|
| 213 |
+
x = self.proj(x) * x_mask
|
| 214 |
+
|
| 215 |
+
if not reverse:
|
| 216 |
+
flows = self.flows
|
| 217 |
+
assert w is not None
|
| 218 |
+
|
| 219 |
+
logdet_tot_q = 0
|
| 220 |
+
h_w = self.post_pre(w)
|
| 221 |
+
h_w = self.post_convs(h_w, x_mask)
|
| 222 |
+
h_w = self.post_proj(h_w) * x_mask
|
| 223 |
+
e_q = (
|
| 224 |
+
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
| 225 |
+
* x_mask
|
| 226 |
+
)
|
| 227 |
+
z_q = e_q
|
| 228 |
+
for flow in self.post_flows:
|
| 229 |
+
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
| 230 |
+
logdet_tot_q += logdet_q
|
| 231 |
+
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
| 232 |
+
u = torch.sigmoid(z_u) * x_mask
|
| 233 |
+
z0 = (w - u) * x_mask
|
| 234 |
+
logdet_tot_q += torch.sum(
|
| 235 |
+
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
| 236 |
+
)
|
| 237 |
+
logq = (
|
| 238 |
+
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
| 239 |
+
- logdet_tot_q
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
logdet_tot = 0
|
| 243 |
+
z0, logdet = self.log_flow(z0, x_mask)
|
| 244 |
+
logdet_tot += logdet
|
| 245 |
+
z = torch.cat([z0, z1], 1)
|
| 246 |
+
for flow in flows:
|
| 247 |
+
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
| 248 |
+
logdet_tot = logdet_tot + logdet
|
| 249 |
+
nll = (
|
| 250 |
+
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
| 251 |
+
- logdet_tot
|
| 252 |
+
)
|
| 253 |
+
return nll + logq # [b]
|
| 254 |
+
else:
|
| 255 |
+
flows = list(reversed(self.flows))
|
| 256 |
+
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
| 257 |
+
z = (
|
| 258 |
+
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
| 259 |
+
* noise_scale
|
| 260 |
+
)
|
| 261 |
+
for flow in flows:
|
| 262 |
+
z = flow(z, x_mask, g=x, reverse=reverse)
|
| 263 |
+
z0, z1 = torch.split(z, [1, 1], 1)
|
| 264 |
+
logw = z0
|
| 265 |
+
return logw
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
class DurationPredictor(nn.Module):
|
| 269 |
+
def __init__(
|
| 270 |
+
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
| 271 |
+
):
|
| 272 |
+
super().__init__()
|
| 273 |
+
|
| 274 |
+
self.in_channels = in_channels
|
| 275 |
+
self.filter_channels = filter_channels
|
| 276 |
+
self.kernel_size = kernel_size
|
| 277 |
+
self.p_dropout = p_dropout
|
| 278 |
+
self.gin_channels = gin_channels
|
| 279 |
+
|
| 280 |
+
self.drop = nn.Dropout(p_dropout)
|
| 281 |
+
self.conv_1 = nn.Conv1d(
|
| 282 |
+
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 283 |
+
)
|
| 284 |
+
self.norm_1 = modules.LayerNorm(filter_channels)
|
| 285 |
+
self.conv_2 = nn.Conv1d(
|
| 286 |
+
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
| 287 |
+
)
|
| 288 |
+
self.norm_2 = modules.LayerNorm(filter_channels)
|
| 289 |
+
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
| 290 |
+
|
| 291 |
+
if gin_channels != 0:
|
| 292 |
+
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
| 293 |
+
|
| 294 |
+
def forward(self, x, x_mask, g=None):
|
| 295 |
+
x = torch.detach(x)
|
| 296 |
+
if g is not None:
|
| 297 |
+
g = torch.detach(g)
|
| 298 |
+
x = x + self.cond(g)
|
| 299 |
+
x = self.conv_1(x * x_mask)
|
| 300 |
+
x = torch.relu(x)
|
| 301 |
+
x = self.norm_1(x)
|
| 302 |
+
x = self.drop(x)
|
| 303 |
+
x = self.conv_2(x * x_mask)
|
| 304 |
+
x = torch.relu(x)
|
| 305 |
+
x = self.norm_2(x)
|
| 306 |
+
x = self.drop(x)
|
| 307 |
+
x = self.proj(x * x_mask)
|
| 308 |
+
return x * x_mask
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
class TextEncoder(nn.Module):
|
| 312 |
+
def __init__(
|
| 313 |
+
self,
|
| 314 |
+
n_vocab,
|
| 315 |
+
out_channels,
|
| 316 |
+
hidden_channels,
|
| 317 |
+
filter_channels,
|
| 318 |
+
n_heads,
|
| 319 |
+
n_layers,
|
| 320 |
+
kernel_size,
|
| 321 |
+
p_dropout,
|
| 322 |
+
gin_channels=0,
|
| 323 |
+
num_languages=None,
|
| 324 |
+
num_tones=None,
|
| 325 |
+
):
|
| 326 |
+
super().__init__()
|
| 327 |
+
if num_languages is None:
|
| 328 |
+
from text import num_languages
|
| 329 |
+
if num_tones is None:
|
| 330 |
+
from text import num_tones
|
| 331 |
+
self.n_vocab = n_vocab
|
| 332 |
+
self.out_channels = out_channels
|
| 333 |
+
self.hidden_channels = hidden_channels
|
| 334 |
+
self.filter_channels = filter_channels
|
| 335 |
+
self.n_heads = n_heads
|
| 336 |
+
self.n_layers = n_layers
|
| 337 |
+
self.kernel_size = kernel_size
|
| 338 |
+
self.p_dropout = p_dropout
|
| 339 |
+
self.gin_channels = gin_channels
|
| 340 |
+
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
| 341 |
+
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
| 342 |
+
self.tone_emb = nn.Embedding(num_tones, hidden_channels)
|
| 343 |
+
nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
|
| 344 |
+
self.language_emb = nn.Embedding(num_languages, hidden_channels)
|
| 345 |
+
nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
|
| 346 |
+
self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
| 347 |
+
self.ja_bert_proj = nn.Conv1d(768, hidden_channels, 1)
|
| 348 |
+
|
| 349 |
+
self.encoder = attentions.Encoder(
|
| 350 |
+
hidden_channels,
|
| 351 |
+
filter_channels,
|
| 352 |
+
n_heads,
|
| 353 |
+
n_layers,
|
| 354 |
+
kernel_size,
|
| 355 |
+
p_dropout,
|
| 356 |
+
gin_channels=self.gin_channels,
|
| 357 |
+
)
|
| 358 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 359 |
+
|
| 360 |
+
def forward(self, x, x_lengths, tone, language, bert, ja_bert, g=None):
|
| 361 |
+
bert_emb = self.bert_proj(bert).transpose(1, 2)
|
| 362 |
+
ja_bert_emb = self.ja_bert_proj(ja_bert).transpose(1, 2)
|
| 363 |
+
x = (
|
| 364 |
+
self.emb(x)
|
| 365 |
+
+ self.tone_emb(tone)
|
| 366 |
+
+ self.language_emb(language)
|
| 367 |
+
+ bert_emb
|
| 368 |
+
+ ja_bert_emb
|
| 369 |
+
) * math.sqrt(
|
| 370 |
+
self.hidden_channels
|
| 371 |
+
) # [b, t, h]
|
| 372 |
+
x = torch.transpose(x, 1, -1) # [b, h, t]
|
| 373 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
| 374 |
+
x.dtype
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
x = self.encoder(x * x_mask, x_mask, g=g)
|
| 378 |
+
stats = self.proj(x) * x_mask
|
| 379 |
+
|
| 380 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 381 |
+
return x, m, logs, x_mask
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
class ResidualCouplingBlock(nn.Module):
|
| 385 |
+
def __init__(
|
| 386 |
+
self,
|
| 387 |
+
channels,
|
| 388 |
+
hidden_channels,
|
| 389 |
+
kernel_size,
|
| 390 |
+
dilation_rate,
|
| 391 |
+
n_layers,
|
| 392 |
+
n_flows=4,
|
| 393 |
+
gin_channels=0,
|
| 394 |
+
):
|
| 395 |
+
super().__init__()
|
| 396 |
+
self.channels = channels
|
| 397 |
+
self.hidden_channels = hidden_channels
|
| 398 |
+
self.kernel_size = kernel_size
|
| 399 |
+
self.dilation_rate = dilation_rate
|
| 400 |
+
self.n_layers = n_layers
|
| 401 |
+
self.n_flows = n_flows
|
| 402 |
+
self.gin_channels = gin_channels
|
| 403 |
+
|
| 404 |
+
self.flows = nn.ModuleList()
|
| 405 |
+
for i in range(n_flows):
|
| 406 |
+
self.flows.append(
|
| 407 |
+
modules.ResidualCouplingLayer(
|
| 408 |
+
channels,
|
| 409 |
+
hidden_channels,
|
| 410 |
+
kernel_size,
|
| 411 |
+
dilation_rate,
|
| 412 |
+
n_layers,
|
| 413 |
+
gin_channels=gin_channels,
|
| 414 |
+
mean_only=True,
|
| 415 |
+
)
|
| 416 |
+
)
|
| 417 |
+
self.flows.append(modules.Flip())
|
| 418 |
+
|
| 419 |
+
def forward(self, x, x_mask, g=None, reverse=False):
|
| 420 |
+
if not reverse:
|
| 421 |
+
for flow in self.flows:
|
| 422 |
+
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
| 423 |
+
else:
|
| 424 |
+
for flow in reversed(self.flows):
|
| 425 |
+
x = flow(x, x_mask, g=g, reverse=reverse)
|
| 426 |
+
return x
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
class PosteriorEncoder(nn.Module):
|
| 430 |
+
def __init__(
|
| 431 |
+
self,
|
| 432 |
+
in_channels,
|
| 433 |
+
out_channels,
|
| 434 |
+
hidden_channels,
|
| 435 |
+
kernel_size,
|
| 436 |
+
dilation_rate,
|
| 437 |
+
n_layers,
|
| 438 |
+
gin_channels=0,
|
| 439 |
+
):
|
| 440 |
+
super().__init__()
|
| 441 |
+
self.in_channels = in_channels
|
| 442 |
+
self.out_channels = out_channels
|
| 443 |
+
self.hidden_channels = hidden_channels
|
| 444 |
+
self.kernel_size = kernel_size
|
| 445 |
+
self.dilation_rate = dilation_rate
|
| 446 |
+
self.n_layers = n_layers
|
| 447 |
+
self.gin_channels = gin_channels
|
| 448 |
+
|
| 449 |
+
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
| 450 |
+
self.enc = modules.WN(
|
| 451 |
+
hidden_channels,
|
| 452 |
+
kernel_size,
|
| 453 |
+
dilation_rate,
|
| 454 |
+
n_layers,
|
| 455 |
+
gin_channels=gin_channels,
|
| 456 |
+
)
|
| 457 |
+
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
| 458 |
+
|
| 459 |
+
def forward(self, x, x_lengths, g=None, tau=1.0):
|
| 460 |
+
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
| 461 |
+
x.dtype
|
| 462 |
+
)
|
| 463 |
+
x = self.pre(x) * x_mask
|
| 464 |
+
x = self.enc(x, x_mask, g=g)
|
| 465 |
+
stats = self.proj(x) * x_mask
|
| 466 |
+
m, logs = torch.split(stats, self.out_channels, dim=1)
|
| 467 |
+
z = (m + torch.randn_like(m) * tau * torch.exp(logs)) * x_mask
|
| 468 |
+
return z, m, logs, x_mask
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
class Generator(torch.nn.Module):
|
| 472 |
+
def __init__(
|
| 473 |
+
self,
|
| 474 |
+
initial_channel,
|
| 475 |
+
resblock,
|
| 476 |
+
resblock_kernel_sizes,
|
| 477 |
+
resblock_dilation_sizes,
|
| 478 |
+
upsample_rates,
|
| 479 |
+
upsample_initial_channel,
|
| 480 |
+
upsample_kernel_sizes,
|
| 481 |
+
gin_channels=0,
|
| 482 |
+
):
|
| 483 |
+
super(Generator, self).__init__()
|
| 484 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 485 |
+
self.num_upsamples = len(upsample_rates)
|
| 486 |
+
self.conv_pre = Conv1d(
|
| 487 |
+
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
| 488 |
+
)
|
| 489 |
+
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
| 490 |
+
|
| 491 |
+
self.ups = nn.ModuleList()
|
| 492 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 493 |
+
self.ups.append(
|
| 494 |
+
weight_norm(
|
| 495 |
+
ConvTranspose1d(
|
| 496 |
+
upsample_initial_channel // (2**i),
|
| 497 |
+
upsample_initial_channel // (2 ** (i + 1)),
|
| 498 |
+
k,
|
| 499 |
+
u,
|
| 500 |
+
padding=(k - u) // 2,
|
| 501 |
+
)
|
| 502 |
+
)
|
| 503 |
+
)
|
| 504 |
+
|
| 505 |
+
self.resblocks = nn.ModuleList()
|
| 506 |
+
for i in range(len(self.ups)):
|
| 507 |
+
ch = upsample_initial_channel // (2 ** (i + 1))
|
| 508 |
+
for j, (k, d) in enumerate(
|
| 509 |
+
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
| 510 |
+
):
|
| 511 |
+
self.resblocks.append(resblock(ch, k, d))
|
| 512 |
+
|
| 513 |
+
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
| 514 |
+
self.ups.apply(init_weights)
|
| 515 |
+
|
| 516 |
+
if gin_channels != 0:
|
| 517 |
+
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
| 518 |
+
|
| 519 |
+
def forward(self, x, g=None):
|
| 520 |
+
x = self.conv_pre(x)
|
| 521 |
+
if g is not None:
|
| 522 |
+
x = x + self.cond(g)
|
| 523 |
+
|
| 524 |
+
for i in range(self.num_upsamples):
|
| 525 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 526 |
+
x = self.ups[i](x)
|
| 527 |
+
xs = None
|
| 528 |
+
for j in range(self.num_kernels):
|
| 529 |
+
if xs is None:
|
| 530 |
+
xs = self.resblocks[i * self.num_kernels + j](x)
|
| 531 |
+
else:
|
| 532 |
+
xs += self.resblocks[i * self.num_kernels + j](x)
|
| 533 |
+
x = xs / self.num_kernels
|
| 534 |
+
x = F.leaky_relu(x)
|
| 535 |
+
x = self.conv_post(x)
|
| 536 |
+
x = torch.tanh(x)
|
| 537 |
+
|
| 538 |
+
return x
|
| 539 |
+
|
| 540 |
+
def remove_weight_norm(self):
|
| 541 |
+
print("Removing weight norm...")
|
| 542 |
+
for layer in self.ups:
|
| 543 |
+
remove_weight_norm(layer)
|
| 544 |
+
for layer in self.resblocks:
|
| 545 |
+
layer.remove_weight_norm()
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
class DiscriminatorP(torch.nn.Module):
|
| 549 |
+
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
| 550 |
+
super(DiscriminatorP, self).__init__()
|
| 551 |
+
self.period = period
|
| 552 |
+
self.use_spectral_norm = use_spectral_norm
|
| 553 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
| 554 |
+
self.convs = nn.ModuleList(
|
| 555 |
+
[
|
| 556 |
+
norm_f(
|
| 557 |
+
Conv2d(
|
| 558 |
+
1,
|
| 559 |
+
32,
|
| 560 |
+
(kernel_size, 1),
|
| 561 |
+
(stride, 1),
|
| 562 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 563 |
+
)
|
| 564 |
+
),
|
| 565 |
+
norm_f(
|
| 566 |
+
Conv2d(
|
| 567 |
+
32,
|
| 568 |
+
128,
|
| 569 |
+
(kernel_size, 1),
|
| 570 |
+
(stride, 1),
|
| 571 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 572 |
+
)
|
| 573 |
+
),
|
| 574 |
+
norm_f(
|
| 575 |
+
Conv2d(
|
| 576 |
+
128,
|
| 577 |
+
512,
|
| 578 |
+
(kernel_size, 1),
|
| 579 |
+
(stride, 1),
|
| 580 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 581 |
+
)
|
| 582 |
+
),
|
| 583 |
+
norm_f(
|
| 584 |
+
Conv2d(
|
| 585 |
+
512,
|
| 586 |
+
1024,
|
| 587 |
+
(kernel_size, 1),
|
| 588 |
+
(stride, 1),
|
| 589 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 590 |
+
)
|
| 591 |
+
),
|
| 592 |
+
norm_f(
|
| 593 |
+
Conv2d(
|
| 594 |
+
1024,
|
| 595 |
+
1024,
|
| 596 |
+
(kernel_size, 1),
|
| 597 |
+
1,
|
| 598 |
+
padding=(get_padding(kernel_size, 1), 0),
|
| 599 |
+
)
|
| 600 |
+
),
|
| 601 |
+
]
|
| 602 |
+
)
|
| 603 |
+
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
| 604 |
+
|
| 605 |
+
def forward(self, x):
|
| 606 |
+
fmap = []
|
| 607 |
+
|
| 608 |
+
# 1d to 2d
|
| 609 |
+
b, c, t = x.shape
|
| 610 |
+
if t % self.period != 0: # pad first
|
| 611 |
+
n_pad = self.period - (t % self.period)
|
| 612 |
+
x = F.pad(x, (0, n_pad), "reflect")
|
| 613 |
+
t = t + n_pad
|
| 614 |
+
x = x.view(b, c, t // self.period, self.period)
|
| 615 |
+
|
| 616 |
+
for layer in self.convs:
|
| 617 |
+
x = layer(x)
|
| 618 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 619 |
+
fmap.append(x)
|
| 620 |
+
x = self.conv_post(x)
|
| 621 |
+
fmap.append(x)
|
| 622 |
+
x = torch.flatten(x, 1, -1)
|
| 623 |
+
|
| 624 |
+
return x, fmap
|
| 625 |
+
|
| 626 |
+
|
| 627 |
+
class DiscriminatorS(torch.nn.Module):
|
| 628 |
+
def __init__(self, use_spectral_norm=False):
|
| 629 |
+
super(DiscriminatorS, self).__init__()
|
| 630 |
+
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
| 631 |
+
self.convs = nn.ModuleList(
|
| 632 |
+
[
|
| 633 |
+
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
| 634 |
+
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
| 635 |
+
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
| 636 |
+
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
| 637 |
+
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
| 638 |
+
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
| 639 |
+
]
|
| 640 |
+
)
|
| 641 |
+
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
| 642 |
+
|
| 643 |
+
def forward(self, x):
|
| 644 |
+
fmap = []
|
| 645 |
+
|
| 646 |
+
for layer in self.convs:
|
| 647 |
+
x = layer(x)
|
| 648 |
+
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
| 649 |
+
fmap.append(x)
|
| 650 |
+
x = self.conv_post(x)
|
| 651 |
+
fmap.append(x)
|
| 652 |
+
x = torch.flatten(x, 1, -1)
|
| 653 |
+
|
| 654 |
+
return x, fmap
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
class MultiPeriodDiscriminator(torch.nn.Module):
|
| 658 |
+
def __init__(self, use_spectral_norm=False):
|
| 659 |
+
super(MultiPeriodDiscriminator, self).__init__()
|
| 660 |
+
periods = [2, 3, 5, 7, 11]
|
| 661 |
+
|
| 662 |
+
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
| 663 |
+
discs = discs + [
|
| 664 |
+
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
| 665 |
+
]
|
| 666 |
+
self.discriminators = nn.ModuleList(discs)
|
| 667 |
+
|
| 668 |
+
def forward(self, y, y_hat):
|
| 669 |
+
y_d_rs = []
|
| 670 |
+
y_d_gs = []
|
| 671 |
+
fmap_rs = []
|
| 672 |
+
fmap_gs = []
|
| 673 |
+
for i, d in enumerate(self.discriminators):
|
| 674 |
+
y_d_r, fmap_r = d(y)
|
| 675 |
+
y_d_g, fmap_g = d(y_hat)
|
| 676 |
+
y_d_rs.append(y_d_r)
|
| 677 |
+
y_d_gs.append(y_d_g)
|
| 678 |
+
fmap_rs.append(fmap_r)
|
| 679 |
+
fmap_gs.append(fmap_g)
|
| 680 |
+
|
| 681 |
+
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
class ReferenceEncoder(nn.Module):
|
| 685 |
+
"""
|
| 686 |
+
inputs --- [N, Ty/r, n_mels*r] mels
|
| 687 |
+
outputs --- [N, ref_enc_gru_size]
|
| 688 |
+
"""
|
| 689 |
+
|
| 690 |
+
def __init__(self, spec_channels, gin_channels=0, layernorm=False):
|
| 691 |
+
super().__init__()
|
| 692 |
+
self.spec_channels = spec_channels
|
| 693 |
+
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
| 694 |
+
K = len(ref_enc_filters)
|
| 695 |
+
filters = [1] + ref_enc_filters
|
| 696 |
+
convs = [
|
| 697 |
+
weight_norm(
|
| 698 |
+
nn.Conv2d(
|
| 699 |
+
in_channels=filters[i],
|
| 700 |
+
out_channels=filters[i + 1],
|
| 701 |
+
kernel_size=(3, 3),
|
| 702 |
+
stride=(2, 2),
|
| 703 |
+
padding=(1, 1),
|
| 704 |
+
)
|
| 705 |
+
)
|
| 706 |
+
for i in range(K)
|
| 707 |
+
]
|
| 708 |
+
self.convs = nn.ModuleList(convs)
|
| 709 |
+
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) # noqa: E501
|
| 710 |
+
|
| 711 |
+
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
| 712 |
+
self.gru = nn.GRU(
|
| 713 |
+
input_size=ref_enc_filters[-1] * out_channels,
|
| 714 |
+
hidden_size=256 // 2,
|
| 715 |
+
batch_first=True,
|
| 716 |
+
)
|
| 717 |
+
self.proj = nn.Linear(128, gin_channels)
|
| 718 |
+
if layernorm:
|
| 719 |
+
self.layernorm = nn.LayerNorm(self.spec_channels)
|
| 720 |
+
print('[Ref Enc]: using layer norm')
|
| 721 |
+
else:
|
| 722 |
+
self.layernorm = None
|
| 723 |
+
|
| 724 |
+
def forward(self, inputs, mask=None):
|
| 725 |
+
N = inputs.size(0)
|
| 726 |
+
|
| 727 |
+
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs]
|
| 728 |
+
if self.layernorm is not None:
|
| 729 |
+
out = self.layernorm(out)
|
| 730 |
+
|
| 731 |
+
for conv in self.convs:
|
| 732 |
+
out = conv(out)
|
| 733 |
+
# out = wn(out)
|
| 734 |
+
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K]
|
| 735 |
+
|
| 736 |
+
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
|
| 737 |
+
T = out.size(1)
|
| 738 |
+
N = out.size(0)
|
| 739 |
+
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
|
| 740 |
+
|
| 741 |
+
self.gru.flatten_parameters()
|
| 742 |
+
memory, out = self.gru(out) # out --- [1, N, 128]
|
| 743 |
+
|
| 744 |
+
return self.proj(out.squeeze(0))
|
| 745 |
+
|
| 746 |
+
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
| 747 |
+
for i in range(n_convs):
|
| 748 |
+
L = (L - kernel_size + 2 * pad) // stride + 1
|
| 749 |
+
return L
|
| 750 |
+
|
| 751 |
+
|
| 752 |
+
class SynthesizerTrn(nn.Module):
|
| 753 |
+
"""
|
| 754 |
+
Synthesizer for Training
|
| 755 |
+
"""
|
| 756 |
+
|
| 757 |
+
def __init__(
|
| 758 |
+
self,
|
| 759 |
+
n_vocab,
|
| 760 |
+
spec_channels,
|
| 761 |
+
segment_size,
|
| 762 |
+
inter_channels,
|
| 763 |
+
hidden_channels,
|
| 764 |
+
filter_channels,
|
| 765 |
+
n_heads,
|
| 766 |
+
n_layers,
|
| 767 |
+
kernel_size,
|
| 768 |
+
p_dropout,
|
| 769 |
+
resblock,
|
| 770 |
+
resblock_kernel_sizes,
|
| 771 |
+
resblock_dilation_sizes,
|
| 772 |
+
upsample_rates,
|
| 773 |
+
upsample_initial_channel,
|
| 774 |
+
upsample_kernel_sizes,
|
| 775 |
+
n_speakers=256,
|
| 776 |
+
gin_channels=256,
|
| 777 |
+
use_sdp=True,
|
| 778 |
+
n_flow_layer=4,
|
| 779 |
+
n_layers_trans_flow=6,
|
| 780 |
+
flow_share_parameter=False,
|
| 781 |
+
use_transformer_flow=True,
|
| 782 |
+
use_vc=False,
|
| 783 |
+
num_languages=None,
|
| 784 |
+
num_tones=None,
|
| 785 |
+
norm_refenc=False,
|
| 786 |
+
**kwargs
|
| 787 |
+
):
|
| 788 |
+
super().__init__()
|
| 789 |
+
self.n_vocab = n_vocab
|
| 790 |
+
self.spec_channels = spec_channels
|
| 791 |
+
self.inter_channels = inter_channels
|
| 792 |
+
self.hidden_channels = hidden_channels
|
| 793 |
+
self.filter_channels = filter_channels
|
| 794 |
+
self.n_heads = n_heads
|
| 795 |
+
self.n_layers = n_layers
|
| 796 |
+
self.kernel_size = kernel_size
|
| 797 |
+
self.p_dropout = p_dropout
|
| 798 |
+
self.resblock = resblock
|
| 799 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
| 800 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
| 801 |
+
self.upsample_rates = upsample_rates
|
| 802 |
+
self.upsample_initial_channel = upsample_initial_channel
|
| 803 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
| 804 |
+
self.segment_size = segment_size
|
| 805 |
+
self.n_speakers = n_speakers
|
| 806 |
+
self.gin_channels = gin_channels
|
| 807 |
+
self.n_layers_trans_flow = n_layers_trans_flow
|
| 808 |
+
self.use_spk_conditioned_encoder = kwargs.get(
|
| 809 |
+
"use_spk_conditioned_encoder", True
|
| 810 |
+
)
|
| 811 |
+
self.use_sdp = use_sdp
|
| 812 |
+
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
| 813 |
+
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
| 814 |
+
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
| 815 |
+
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
| 816 |
+
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
| 817 |
+
self.enc_gin_channels = gin_channels
|
| 818 |
+
else:
|
| 819 |
+
self.enc_gin_channels = 0
|
| 820 |
+
self.enc_p = TextEncoder(
|
| 821 |
+
n_vocab,
|
| 822 |
+
inter_channels,
|
| 823 |
+
hidden_channels,
|
| 824 |
+
filter_channels,
|
| 825 |
+
n_heads,
|
| 826 |
+
n_layers,
|
| 827 |
+
kernel_size,
|
| 828 |
+
p_dropout,
|
| 829 |
+
gin_channels=self.enc_gin_channels,
|
| 830 |
+
num_languages=num_languages,
|
| 831 |
+
num_tones=num_tones,
|
| 832 |
+
)
|
| 833 |
+
self.dec = Generator(
|
| 834 |
+
inter_channels,
|
| 835 |
+
resblock,
|
| 836 |
+
resblock_kernel_sizes,
|
| 837 |
+
resblock_dilation_sizes,
|
| 838 |
+
upsample_rates,
|
| 839 |
+
upsample_initial_channel,
|
| 840 |
+
upsample_kernel_sizes,
|
| 841 |
+
gin_channels=gin_channels,
|
| 842 |
+
)
|
| 843 |
+
self.enc_q = PosteriorEncoder(
|
| 844 |
+
spec_channels,
|
| 845 |
+
inter_channels,
|
| 846 |
+
hidden_channels,
|
| 847 |
+
5,
|
| 848 |
+
1,
|
| 849 |
+
16,
|
| 850 |
+
gin_channels=gin_channels,
|
| 851 |
+
)
|
| 852 |
+
if use_transformer_flow:
|
| 853 |
+
self.flow = TransformerCouplingBlock(
|
| 854 |
+
inter_channels,
|
| 855 |
+
hidden_channels,
|
| 856 |
+
filter_channels,
|
| 857 |
+
n_heads,
|
| 858 |
+
n_layers_trans_flow,
|
| 859 |
+
5,
|
| 860 |
+
p_dropout,
|
| 861 |
+
n_flow_layer,
|
| 862 |
+
gin_channels=gin_channels,
|
| 863 |
+
share_parameter=flow_share_parameter,
|
| 864 |
+
)
|
| 865 |
+
else:
|
| 866 |
+
self.flow = ResidualCouplingBlock(
|
| 867 |
+
inter_channels,
|
| 868 |
+
hidden_channels,
|
| 869 |
+
5,
|
| 870 |
+
1,
|
| 871 |
+
n_flow_layer,
|
| 872 |
+
gin_channels=gin_channels,
|
| 873 |
+
)
|
| 874 |
+
self.sdp = StochasticDurationPredictor(
|
| 875 |
+
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
|
| 876 |
+
)
|
| 877 |
+
self.dp = DurationPredictor(
|
| 878 |
+
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
|
| 879 |
+
)
|
| 880 |
+
|
| 881 |
+
if n_speakers > 0:
|
| 882 |
+
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
| 883 |
+
else:
|
| 884 |
+
self.ref_enc = ReferenceEncoder(spec_channels, gin_channels, layernorm=norm_refenc)
|
| 885 |
+
self.use_vc = use_vc
|
| 886 |
+
|
| 887 |
+
|
| 888 |
+
def forward(self, x, x_lengths, y, y_lengths, sid, tone, language, bert, ja_bert):
|
| 889 |
+
if self.n_speakers > 0:
|
| 890 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 891 |
+
else:
|
| 892 |
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
| 893 |
+
if self.use_vc:
|
| 894 |
+
g_p = None
|
| 895 |
+
else:
|
| 896 |
+
g_p = g
|
| 897 |
+
x, m_p, logs_p, x_mask = self.enc_p(
|
| 898 |
+
x, x_lengths, tone, language, bert, ja_bert, g=g_p
|
| 899 |
+
)
|
| 900 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
| 901 |
+
z_p = self.flow(z, y_mask, g=g)
|
| 902 |
+
|
| 903 |
+
with torch.no_grad():
|
| 904 |
+
# negative cross-entropy
|
| 905 |
+
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
| 906 |
+
neg_cent1 = torch.sum(
|
| 907 |
+
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
|
| 908 |
+
) # [b, 1, t_s]
|
| 909 |
+
neg_cent2 = torch.matmul(
|
| 910 |
+
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
|
| 911 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
| 912 |
+
neg_cent3 = torch.matmul(
|
| 913 |
+
z_p.transpose(1, 2), (m_p * s_p_sq_r)
|
| 914 |
+
) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
| 915 |
+
neg_cent4 = torch.sum(
|
| 916 |
+
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
|
| 917 |
+
) # [b, 1, t_s]
|
| 918 |
+
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
| 919 |
+
if self.use_noise_scaled_mas:
|
| 920 |
+
epsilon = (
|
| 921 |
+
torch.std(neg_cent)
|
| 922 |
+
* torch.randn_like(neg_cent)
|
| 923 |
+
* self.current_mas_noise_scale
|
| 924 |
+
)
|
| 925 |
+
neg_cent = neg_cent + epsilon
|
| 926 |
+
|
| 927 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 928 |
+
attn = (
|
| 929 |
+
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
|
| 930 |
+
.unsqueeze(1)
|
| 931 |
+
.detach()
|
| 932 |
+
)
|
| 933 |
+
|
| 934 |
+
w = attn.sum(2)
|
| 935 |
+
|
| 936 |
+
l_length_sdp = self.sdp(x, x_mask, w, g=g)
|
| 937 |
+
l_length_sdp = l_length_sdp / torch.sum(x_mask)
|
| 938 |
+
|
| 939 |
+
logw_ = torch.log(w + 1e-6) * x_mask
|
| 940 |
+
logw = self.dp(x, x_mask, g=g)
|
| 941 |
+
l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
|
| 942 |
+
x_mask
|
| 943 |
+
) # for averaging
|
| 944 |
+
|
| 945 |
+
l_length = l_length_dp + l_length_sdp
|
| 946 |
+
|
| 947 |
+
# expand prior
|
| 948 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
| 949 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
| 950 |
+
|
| 951 |
+
z_slice, ids_slice = commons.rand_slice_segments(
|
| 952 |
+
z, y_lengths, self.segment_size
|
| 953 |
+
)
|
| 954 |
+
o = self.dec(z_slice, g=g)
|
| 955 |
+
return (
|
| 956 |
+
o,
|
| 957 |
+
l_length,
|
| 958 |
+
attn,
|
| 959 |
+
ids_slice,
|
| 960 |
+
x_mask,
|
| 961 |
+
y_mask,
|
| 962 |
+
(z, z_p, m_p, logs_p, m_q, logs_q),
|
| 963 |
+
(x, logw, logw_),
|
| 964 |
+
)
|
| 965 |
+
|
| 966 |
+
def infer(
|
| 967 |
+
self,
|
| 968 |
+
x,
|
| 969 |
+
x_lengths,
|
| 970 |
+
sid,
|
| 971 |
+
tone,
|
| 972 |
+
language,
|
| 973 |
+
bert,
|
| 974 |
+
ja_bert,
|
| 975 |
+
noise_scale=0.667,
|
| 976 |
+
length_scale=1,
|
| 977 |
+
noise_scale_w=0.8,
|
| 978 |
+
max_len=None,
|
| 979 |
+
sdp_ratio=0,
|
| 980 |
+
y=None,
|
| 981 |
+
g=None,
|
| 982 |
+
):
|
| 983 |
+
# x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, tone, language, bert)
|
| 984 |
+
# g = self.gst(y)
|
| 985 |
+
if g is None:
|
| 986 |
+
if self.n_speakers > 0:
|
| 987 |
+
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
| 988 |
+
else:
|
| 989 |
+
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
| 990 |
+
if self.use_vc:
|
| 991 |
+
g_p = None
|
| 992 |
+
else:
|
| 993 |
+
g_p = g
|
| 994 |
+
x, m_p, logs_p, x_mask = self.enc_p(
|
| 995 |
+
x, x_lengths, tone, language, bert, ja_bert, g=g_p
|
| 996 |
+
)
|
| 997 |
+
logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
|
| 998 |
+
sdp_ratio
|
| 999 |
+
) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
|
| 1000 |
+
w = torch.exp(logw) * x_mask * length_scale
|
| 1001 |
+
|
| 1002 |
+
w_ceil = torch.ceil(w)
|
| 1003 |
+
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
| 1004 |
+
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
|
| 1005 |
+
x_mask.dtype
|
| 1006 |
+
)
|
| 1007 |
+
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
| 1008 |
+
attn = commons.generate_path(w_ceil, attn_mask)
|
| 1009 |
+
|
| 1010 |
+
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
| 1011 |
+
1, 2
|
| 1012 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 1013 |
+
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
|
| 1014 |
+
1, 2
|
| 1015 |
+
) # [b, t', t], [b, t, d] -> [b, d, t']
|
| 1016 |
+
|
| 1017 |
+
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
| 1018 |
+
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
| 1019 |
+
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
| 1020 |
+
# print('max/min of o:', o.max(), o.min())
|
| 1021 |
+
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
| 1022 |
+
|
| 1023 |
+
def voice_conversion(self, y, y_lengths, sid_src, sid_tgt, tau=1.0):
|
| 1024 |
+
g_src = sid_src
|
| 1025 |
+
g_tgt = sid_tgt
|
| 1026 |
+
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g_src, tau=tau)
|
| 1027 |
+
z_p = self.flow(z, y_mask, g=g_src)
|
| 1028 |
+
z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True)
|
| 1029 |
+
o_hat = self.dec(z_hat * y_mask, g=g_tgt)
|
| 1030 |
+
return o_hat, y_mask, (z, z_p, z_hat)
|