Update MeloTTS/melo/text/cleaner.py
Browse files- MeloTTS/melo/text/cleaner.py +35 -35
MeloTTS/melo/text/cleaner.py
CHANGED
|
@@ -1,36 +1,36 @@
|
|
| 1 |
-
from . import
|
| 2 |
-
from . import cleaned_text_to_sequence
|
| 3 |
-
import copy
|
| 4 |
-
|
| 5 |
-
language_module_map = {"ZH": chinese, "JP": japanese, "EN": english, 'ZH_MIX_EN': chinese_mix, 'KR': korean,
|
| 6 |
-
'FR': french, 'SP': spanish, 'ES': spanish}
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
def clean_text(text, language):
|
| 10 |
-
language_module = language_module_map[language]
|
| 11 |
-
norm_text = language_module.text_normalize(text)
|
| 12 |
-
phones, tones, word2ph = language_module.g2p(norm_text)
|
| 13 |
-
return norm_text, phones, tones, word2ph
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
def clean_text_bert(text, language, device=None):
|
| 17 |
-
language_module = language_module_map[language]
|
| 18 |
-
norm_text = language_module.text_normalize(text)
|
| 19 |
-
phones, tones, word2ph = language_module.g2p(norm_text)
|
| 20 |
-
|
| 21 |
-
word2ph_bak = copy.deepcopy(word2ph)
|
| 22 |
-
for i in range(len(word2ph)):
|
| 23 |
-
word2ph[i] = word2ph[i] * 2
|
| 24 |
-
word2ph[0] += 1
|
| 25 |
-
bert = language_module.get_bert_feature(norm_text, word2ph, device=device)
|
| 26 |
-
|
| 27 |
-
return norm_text, phones, tones, word2ph_bak, bert
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
def text_to_sequence(text, language):
|
| 31 |
-
norm_text, phones, tones, word2ph = clean_text(text, language)
|
| 32 |
-
return cleaned_text_to_sequence(phones, tones, language)
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
if __name__ == "__main__":
|
| 36 |
pass
|
|
|
|
| 1 |
+
from . import english
|
| 2 |
+
from . import cleaned_text_to_sequence
|
| 3 |
+
import copy
|
| 4 |
+
|
| 5 |
+
language_module_map = {"ZH": chinese, "JP": japanese, "EN": english, 'ZH_MIX_EN': chinese_mix, 'KR': korean,
|
| 6 |
+
'FR': french, 'SP': spanish, 'ES': spanish}
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def clean_text(text, language):
|
| 10 |
+
language_module = language_module_map[language]
|
| 11 |
+
norm_text = language_module.text_normalize(text)
|
| 12 |
+
phones, tones, word2ph = language_module.g2p(norm_text)
|
| 13 |
+
return norm_text, phones, tones, word2ph
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def clean_text_bert(text, language, device=None):
|
| 17 |
+
language_module = language_module_map[language]
|
| 18 |
+
norm_text = language_module.text_normalize(text)
|
| 19 |
+
phones, tones, word2ph = language_module.g2p(norm_text)
|
| 20 |
+
|
| 21 |
+
word2ph_bak = copy.deepcopy(word2ph)
|
| 22 |
+
for i in range(len(word2ph)):
|
| 23 |
+
word2ph[i] = word2ph[i] * 2
|
| 24 |
+
word2ph[0] += 1
|
| 25 |
+
bert = language_module.get_bert_feature(norm_text, word2ph, device=device)
|
| 26 |
+
|
| 27 |
+
return norm_text, phones, tones, word2ph_bak, bert
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def text_to_sequence(text, language):
|
| 31 |
+
norm_text, phones, tones, word2ph = clean_text(text, language)
|
| 32 |
+
return cleaned_text_to_sequence(phones, tones, language)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
if __name__ == "__main__":
|
| 36 |
pass
|