import gradio as gr import numpy as np import random # import spaces #[uncomment to use ZeroGPU] # from diffusers import SanaPipeline, StableDiffusion3Pipeline, FluxPipeline from sid import SiDFluxPipeline, SiDSD3Pipeline, SiDSanaPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 MODEL_OPTIONS = { "SiD-Flow-SD3-medium": "YGu1998/SiD-Flow-SD3-medium", "SiDA-Flow-SD3-medium": "YGu1998/SiDA-Flow-SD3-medium", "SiD-Flow-SD3.5-large": "YGu1998/SiD-Flow-SD3.5-large", "SiDA-Flow-SD3.5-large": "YGu1998/SiDA-Flow-SD3.5-large", "SiD-Flow-Sana-0.6B-512-res": "YGu1998/SiD-Flow-Sana-0.6B-512-res", "SiDA-Flow-Sana-0.6B-512-res": "YGu1998/SiDA-Flow-Sana-0.6B-512-res", "SiD-Flow-Sana-1.6B-512-res": "YGu1998/SiD-Flow-Sana-1.6B-512-res", "SiDA-Flow-Sana-1.6B-512-res": "YGu1998/SiDA-Flow-Sana-1.6B-512-res", "SiD-Flow-Sana-Sprint-0.6B-1024-res": "YGu1998/SiD-Flow-Sana-Sprint-0.6B-1024-res", "SiDA-Flow-Sana-Sprint-0.6B-1024-res": "YGu1998/SiDA-Flow-Sana-Sprint-0.6B-1024-res", "SiD-Flow-Sana-Sprint-1.6B-1024-res": "YGu1998/SiD-Flow-Sana-Sprint-1.6B-1024-res", "SiDA-Flow-Sana-Sprint-1.6B-1024-res": "YGu1998/SiDA-Flow-Sana-Sprint-1.6B-1024-res", "SiD-Flow-Flux-1024-res": "YGu1998/SiD-Flow-Flux-1024-res", "SiD-Flow-Flux-512-res": "YGu1998/SiD-Flow-Flux-512-res", } def load_model(model_choice): model_repo_id = MODEL_OPTIONS[model_choice] time_scale = 1000.0 if "Sana" in model_choice: pipe = SiDSanaPipeline.from_pretrained(model_repo_id, torch_dtype=torch.bfloat16) if "Sprint" in model_choice: time_scale = 1.0 elif "SD3" in model_choice: pipe = SiDSD3Pipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) elif "Flux" in model_choice: pipe = SiDFluxPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) else: raise ValueError(f"Unknown model type for: {model_choice}") pipe = pipe.to(device) return pipe, time_scale MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # @spaces.GPU #[uncomment to use ZeroGPU] def infer( prompt, seed, randomize_seed, width, height, num_inference_steps, model_choice, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) pipe, time_scale = load_model(model_choice) image = pipe( prompt=prompt, guidance_scale=1, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, time_scale=time_scale, ).images[0] return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # SiD-DiT demo") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") model_choice = gr.Dropdown( label="Model Choice", choices=list(MODEL_OPTIONS.keys()), value="SiD-Flow-SD3-medium", ) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # Replace with defaults that work for your model ) with gr.Row(): # guidance_scale = gr.Slider( # label="Guidance scale", # minimum=0.0, # maximum=10.0, # step=0.1, # value=0.0, # Replace with defaults that work for your model # ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=4, step=1, value=2, # Replace with defaults that work for your model ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, seed, randomize_seed, width, height, num_inference_steps, model_choice, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()