File size: 11,696 Bytes
1ce5864
dda35dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ce5864
dda35dd
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import streamlit as st
import pandas as pd
import numpy as np
import torch
import matplotlib.pyplot as plt
import pickle
import os
import warnings
from lllm_model_all_token import LLMConcreteModel

# Optimize for deployment
warnings.filterwarnings('ignore')
torch.set_num_threads(2)

# Canva-style colors
CANVA_PURPLE = "#8B5CF6"
CANVA_LIGHT_PURPLE = "#A78BFA"
CANVA_DARK_PURPLE = "#7C3AED"
CANVA_BACKGROUND = "#FAFAFA"
CANVA_WHITE = "#FFFFFF"

# Set page config with Canva-style theme
st.set_page_config(
    page_title="Concrete Creep Prediction",
    page_icon="πŸ—οΈ",
    layout="centered",
    initial_sidebar_state="collapsed"
)

# Custom CSS for Canva-style design
st.markdown(f"""
<style>
    .main {{
        background-color: {CANVA_BACKGROUND};
    }}
    
    .stApp {{
        background-color: {CANVA_BACKGROUND};
    }}
    
    .css-1d391kg {{
        background-color: {CANVA_WHITE};
        padding: 2rem;
        border-radius: 15px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        margin: 1rem 0;
    }}
    
    .stButton > button {{
        background-color: {CANVA_PURPLE};
        color: white;
        border: none;
        border-radius: 25px;
        padding: 0.75rem 2rem;
        font-weight: 600;
        font-size: 16px;
        transition: all 0.3s ease;
        width: 100%;
    }}
    
    .stButton > button:hover {{
        background-color: {CANVA_DARK_PURPLE};
        transform: translateY(-2px);
        box-shadow: 0 4px 12px rgba(139, 92, 246, 0.3);
    }}
    
    .stNumberInput > div > div > input {{
        border-radius: 10px;
        border: 2px solid #E5E7EB;
        padding: 0.75rem;
    }}
    
    .stNumberInput > div > div > input:focus {{
        border-color: {CANVA_PURPLE};
        box-shadow: 0 0 0 3px rgba(139, 92, 246, 0.1);
    }}
    
    .metric-card {{
        background: linear-gradient(135deg, {CANVA_PURPLE}, {CANVA_LIGHT_PURPLE});
        color: white;
        padding: 1.5rem;
        border-radius: 15px;
        text-align: center;
        margin: 0.5rem 0;
    }}
    
    .result-card {{
        background-color: {CANVA_WHITE};
        padding: 2rem;
        border-radius: 15px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
        margin: 1rem 0;
    }}
    
    h1 {{
        color: {CANVA_DARK_PURPLE};
        text-align: center;
        font-weight: 700;
        margin-bottom: 2rem;
    }}
    
    h2, h3 {{
        color: {CANVA_DARK_PURPLE};
        font-weight: 600;
    }}
    
    .stSuccess {{
        background-color: #10B981;
        color: white;
        border-radius: 10px;
    }}
</style>
""", unsafe_allow_html=True)

# Simple CreepScaler class
class CreepScaler:
    def __init__(self, factor=1000):
        self.factor = factor
        self.mean_ = 0
        self.scale_ = factor
        self.is_standard_scaler = False
    
    def transform(self, X):
        if self.is_standard_scaler:
            return (X - self.mean_) / self.scale_
        return X / self.factor
    
    def inverse_transform(self, X):
        if self.is_standard_scaler:
            return (X * self.scale_) + self.mean_
        return X * self.factor

@st.cache_resource
def load_model():
    """Load model and scalers"""
    # Find model file
    model_files = ['best_llm_model-17.pt', 'final_llm_model-5.pt']
    model_path = None
    for file in model_files:
        if os.path.exists(file):
            model_path = file
            break
    
    if model_path is None:
        st.error("❌ Model file not found")
        st.stop()
    
    # Load scalers
    try:
        with open('scalers/feature_scaler.pkl', 'rb') as f:
            feature_scaler = pickle.load(f)
        
        try:
            with open('scalers/creep_scaler.pkl', 'rb') as f:
                creep_scaler = pickle.load(f)
        except:
            creep_scaler = CreepScaler(factor=1000)
        
        try:
            with open('scalers/time_values.pkl', 'rb') as f:
                time_values = pickle.load(f)
        except:
            time_values = np.arange(1, 1001)  # Default 1000 time points
            
    except Exception as e:
        st.error(f"❌ Error loading files: {e}")
        st.stop()
    
    # Load model
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = LLMConcreteModel(
        feature_dim=3,
        d_model=192,
        num_layers=4,
        num_heads=4,
        d_ff=768,
        dropout=0.057,
        target_len=1,
        pooling_method='hybrid'
    )
    
    try:
        model.load_state_dict(torch.load(model_path, map_location=device))
        model = model.to(device)
        model.eval()
    except Exception as e:
        st.error(f"❌ Error loading model: {e}")
        st.stop()
    
    return model, feature_scaler, creep_scaler, time_values, device

def predict_creep(model, features, time_values, feature_scaler, creep_scaler, device, max_days=365):
    """Simple prediction function"""
    # Scale features
    scaled_features = feature_scaler.transform(features)
    scaled_features_tensor = torch.FloatTensor(scaled_features).to(device)
    
    # Limit time values
    pred_time_values = time_values[:max_days] if max_days < len(time_values) else time_values
    
    predictions = [0.0]  # Start with 0
    scaled_predictions = [0.0]
    
    with torch.no_grad():
        for i in range(1, len(pred_time_values)):
            history = np.array(scaled_predictions)
            history_tensor = torch.FloatTensor(history).unsqueeze(0).to(device)
            
            time_history = np.log1p(pred_time_values[:i])
            time_tensor = torch.FloatTensor(time_history).unsqueeze(0).to(device)
            
            length = torch.tensor([len(history)], device=device)
            
            next_value = model(
                creep_history=history_tensor,
                features=scaled_features_tensor,
                lengths=length,
                time_history=time_tensor
            ).item()
            
            scaled_predictions.append(next_value)
            next_creep = creep_scaler.inverse_transform(np.array([[next_value]])).flatten()[0]
            predictions.append(next_creep)
    
    return np.array(predictions), pred_time_values

# Load model
model, feature_scaler, creep_scaler, time_values, device = load_model()

def get_base64_of_image(path):
    """Convert image to base64 string"""
    import base64
    try:
        with open(path, "rb") as img_file:
            return base64.b64encode(img_file.read()).decode()
    except:
        return ""

# App title with logo
st.markdown("""
<div style='text-align: center; padding: 2rem 0;'>
    <div style='display: flex; justify-content: center; align-items: center; margin-bottom: 1.5rem; flex-wrap: wrap;'>
        <img src='data:image/png;base64,{}' style='width: 120px; height: auto; max-height: 100px; margin-right: 1.5rem; margin-bottom: 1rem; border-radius: 10px; box-shadow: 0 4px 12px rgba(139, 92, 246, 0.2); object-fit: contain;'>
        <div style='text-align: center;'>
            <h1 style='margin: 0; color: {}; font-size: 2.5rem; font-weight: 700;'>πŸ—οΈ Concrete Creep Prediction</h1>
            <p style='margin: 0; font-size: 18px; color: #6B7280; font-weight: 500;'>AI-Powered Concrete Analysis</p>
        </div>
    </div>
</div>
""".format(
    get_base64_of_image("AI_logo.png"),
    CANVA_DARK_PURPLE
), unsafe_allow_html=True)

# Input form in a clean card
with st.container():
    st.markdown('<div class="css-1d391kg">', unsafe_allow_html=True)
    
    st.markdown("### πŸ“ Enter Concrete Properties")
    
    col1, col2 = st.columns(2)
    
    with col1:
        density = st.number_input(
            "Density (kg/mΒ³)", 
            min_value=2000.0, 
            max_value=3000.0, 
            value=2490.0,
            step=10.0
        )
        
        fc = st.number_input(
            "Compressive Strength (ksc)", 
            min_value=10.0, 
            max_value=1000.0, 
            value=670.0,
            step=10.0
        )
    
    with col2:
        e_modulus = st.number_input(
            "Elastic Modulus (ksc)", 
            min_value=10000.0, 
            max_value=1000000.0, 
            value=436000.0,
            step=1000.0
        )
    
    st.markdown('</div>', unsafe_allow_html=True)

# Predict button
if st.button("πŸš€ Predict Creep Strain"):
    # Set default prediction days
    max_days = 365
    
    # Create features
    features_dict = {
        'Density': density,
        'fc': fc,
        'E': e_modulus
    }
    df_features = pd.DataFrame([features_dict])
    
    # Run prediction
    with st.spinner("πŸ”„ Predicting..."):
        try:
            predictions, pred_time_values = predict_creep(
                model, df_features, time_values, 
                feature_scaler, creep_scaler, device, max_days
            )
            
            # Results
            st.markdown('<div class="result-card">', unsafe_allow_html=True)
            
            # Key metrics
            col1, col2 = st.columns(2)
            with col1:
                st.markdown(f"""
                <div class="metric-card">
                    <h3>{predictions[-1]:.1f}</h3>
                    <p>Final Creep (¡Ρ)</p>
                </div>
                """, unsafe_allow_html=True)
            
            with col2:
                st.markdown(f"""
                <div class="metric-card">
                    <h3>{np.max(predictions):.1f}</h3>
                    <p>Maximum Creep (¡Ρ)</p>
                </div>
                """, unsafe_allow_html=True)
            
            # Simple plot
            st.markdown("### πŸ“Š Creep Strain Over Time")
            
            # Set plot style to match Canva theme
            plt.style.use('default')
            fig, ax = plt.subplots(figsize=(10, 6))
            fig.patch.set_facecolor('white')
            
            ax.plot(pred_time_values, predictions, 
                   color=CANVA_PURPLE, linewidth=3, alpha=0.8)
            ax.fill_between(pred_time_values, predictions, 
                           alpha=0.2, color=CANVA_LIGHT_PURPLE)
            
            ax.set_xlabel('Time (days)', fontsize=12, color='#374151')
            ax.set_ylabel('Creep Strain (¡Ρ)', fontsize=12, color='#374151')
            ax.grid(True, alpha=0.3, color='#E5E7EB')
            ax.set_facecolor('#FAFAFA')
            
            # Remove top and right spines
            ax.spines['top'].set_visible(False)
            ax.spines['right'].set_visible(False)
            ax.spines['left'].set_color('#E5E7EB')
            ax.spines['bottom'].set_color('#E5E7EB')
            
            plt.tight_layout()
            st.pyplot(fig)
            
            # Download data
            results_df = pd.DataFrame({
                'Time (days)': pred_time_values,
                'Creep Strain (¡Ρ)': predictions
            })
            
            csv = results_df.to_csv(index=False)
            st.download_button(
                label="πŸ’Ύ Download Results",
                data=csv,
                file_name="creep_predictions.csv",
                mime="text/csv"
            )
            
            st.markdown('</div>', unsafe_allow_html=True)
            
        except Exception as e:
            st.error(f"❌ Prediction failed: {e}")

# Simple footer
st.markdown("""
<div style='text-align: center; padding: 2rem 0; color: #9CA3AF;'>
    <p>πŸ—οΈ Concrete Creep Prediction Tool</p>
    <p style='margin-top: 0.5rem; font-size: 14px;'>Developed by <strong>CIFIR</strong> and <strong>AI Research Group KMUTT</strong></p>
</div>
""", unsafe_allow_html=True)