Spaces:
Runtime error
Runtime error
File size: 60,018 Bytes
dda35dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 |
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import math
from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence, pad_packed_sequence
"""
Concrete Creep Prediction Model with LLM-Style Full History Processing
This model uses an LLM-style approach for predicting concrete creep, where the entire history
of creep measurements is processed using transformer architecture.
Key improvements:
1. Full token utilization - instead of only using the last token, the model leverages all tokens
in the creep history sequence using a hybrid pooling method that combines:
- Mean pooling: Average of all sequence tokens
- Attention pooling: Weighted sum based on learned attention
- Last token: Traditional approach (which worked well in previous versions)
This hybrid approach provides a richer representation of the sequence history,
allowing the model to better capture both overall patterns and recent trends.
"""
# Set random seed for reproducibility
torch.manual_seed(42)
np.random.seed(42)
# Define the file paths
EXCEL_FEATURE_FILE = 'data_r28april.xlsx'
EXCEL_CREEP_FILE = 'creep_predictions.xlsx'
# Function to specifically handle the format of creep_predictions_1_to_220.xlsx
def load_creep_prediction_file():
"""
This function is specifically designed to handle the format of the
creep_predictions_1_to_220.xlsx file which has a structure where:
- Columns represent samples
- Rows represent time points
"""
try:
# Load the file
df_creep = pd.read_excel(EXCEL_CREEP_FILE)
print(f"Loaded creep file with shape: {df_creep.shape}")
# Check if first column is time values
first_col = df_creep.columns[0]
if first_col in ['time', 'Time', 'TIME', 't', 'T', 'day', 'Day', 'DAY', 'd', 'D'] or str(first_col).lower().startswith(('time', 'day')):
print(f"First column '{first_col}' recognized as time values")
# Extract time values as an array to preserve for later use
time_values = df_creep.iloc[:, 0].values
# Remove the time column to keep only sample data
df_creep = df_creep.iloc[:, 1:]
# Store time values in the DataFrame attributes for reference
df_creep.attrs['time_values'] = time_values
else:
print(f"First column '{first_col}' not recognized as time, but treating rows as time points")
# Generate sequential time values if not provided
time_values = np.arange(1, len(df_creep) + 1)
df_creep.attrs['time_values'] = time_values
print(f"DataFrame processed: {df_creep.shape[1]} samples across {df_creep.shape[0]} time points")
return df_creep
except Exception as e:
print(f"Error loading creep prediction file: {str(e)}")
# Return an empty DataFrame as a fallback
return pd.DataFrame()
# Update the load_data function to use the specialized loader
def load_data():
# Read creep predictions from the new file using specialized loader
df_creep = load_creep_prediction_file()
# Read features from the original file
df_features = pd.read_excel(EXCEL_FEATURE_FILE, sheet_name='Sheet2')
# Ensure we have the same number of samples in both dataframes
# Samples are in columns for creep data and in rows for feature data
if df_creep.shape[1] != len(df_features):
print(f"Warning: Creep data has {df_creep.shape[1]} samples (columns) but features data has {len(df_features)} rows")
# Find the minimum number of samples to use
min_samples = min(df_creep.shape[1], len(df_features))
# Keep only matching samples
df_creep = df_creep.iloc[:, :min_samples]
df_features = df_features.iloc[:min_samples]
print(f"Using only {min_samples} samples that match between datasets")
return df_creep, df_features
# Custom Dataset class for full-history prediction (like LLM)
class LLMConcreteCreepDataset(Dataset):
def __init__(self, creep_data, time_data, features, target_len=1):
"""
Args:
creep_data: List of variable-length time series [sample_idx][time_idx]
time_data: List of time points [sample_idx][time_idx]
features: Feature matrix [n_samples, n_features]
target_len: Number of values to predict
"""
self.creep_data = creep_data # List of time series
self.time_data = time_data # List of time points
self.features = features # Feature data
self.target_len = target_len # Number of values to predict
# Create samples
self.samples = self._prepare_samples()
def _prepare_samples(self):
"""
Prepare samples for LLM-style prediction
Each sample includes all previous time steps up to time t
and targets the next target_len values
"""
samples = []
for i in range(len(self.creep_data)):
time_series = self.creep_data[i]
time_points = self.time_data[i] if self.time_data is not None else None
feature_vec = self.features[i]
# For each time step (except the last target_len steps)
for t in range(1, len(time_series) - self.target_len + 1):
# Input: all previous values up to t
history = time_series[:t]
# Get time points if available
time_history = time_points[:t] if time_points is not None else None
# Target: next target_len values
targets = time_series[t:t+self.target_len]
samples.append((history, targets, feature_vec, time_history))
return samples
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
history, targets, features, time_history = self.samples[idx]
# Convert to tensors
history_tensor = torch.FloatTensor(history)
targets_tensor = torch.FloatTensor(targets)
features_tensor = torch.FloatTensor(features)
if time_history is not None:
time_tensor = torch.FloatTensor(time_history)
return history_tensor, targets_tensor, features_tensor, time_tensor, len(history)
else:
return history_tensor, targets_tensor, features_tensor, len(history)
# Custom collate function to handle variable length sequences
def collate_fn(batch):
"""
Pack variable length sequences for efficient processing
"""
# Sort by sequence length (descending)
if len(batch[0]) > 4: # With time data
batch.sort(key=lambda x: x[4], reverse=True)
histories, targets, features, times, lengths = zip(*batch)
# Pad sequences - keep all tensors on CPU to be moved to appropriate device later
padded_histories = pad_sequence(histories, batch_first=True)
padded_targets = torch.stack(targets)
padded_features = torch.stack(features)
padded_times = pad_sequence(times, batch_first=True)
return padded_histories, padded_targets, padded_features, padded_times, torch.tensor(lengths, dtype=torch.int64)
else: # Without time data
batch.sort(key=lambda x: x[3], reverse=True)
histories, targets, features, lengths = zip(*batch)
# Pad sequences - keep all tensors on CPU to be moved to appropriate device later
padded_histories = pad_sequence(histories, batch_first=True)
padded_targets = torch.stack(targets)
padded_features = torch.stack(features)
return padded_histories, padded_targets, padded_features, torch.tensor(lengths, dtype=torch.int64)
# Prepare data for LLM-style model
def prepare_llm_data(target_len=1, test_size=0.05, val_size=0.05):
# Load data from files
df_creep, df_features = load_data()
# Prepare variable-length sequences and time points
creep_sequences = []
time_points = []
# Check the format of the creep data file
print(f"Creep data has {df_creep.shape[1]} samples across {df_creep.shape[0]} time points")
# Get time values if available from the data loading step
if hasattr(df_creep, 'attrs') and 'time_values' in df_creep.attrs:
time_values = df_creep.attrs['time_values']
print(f"Found time values with shape: {time_values.shape}")
# Make sure time_values matches the number of rows in df_creep
if len(time_values) != df_creep.shape[0]:
print(f"Warning: Time values length ({len(time_values)}) doesn't match data rows ({df_creep.shape[0]})")
# Truncate or extend time_values to match
if len(time_values) > df_creep.shape[0]:
time_values = time_values[:df_creep.shape[0]]
else:
# Extend with sequential values
additional = np.arange(len(time_values) + 1, df_creep.shape[0] + 1)
time_values = np.append(time_values, additional)
print(f"Adjusted time values to length: {len(time_values)}")
else:
# Generate sequential time values if not available
time_values = np.arange(1, df_creep.shape[0] + 1)
print("Using generated sequential time values")
# Process each column (sample) in the creep data
for col_idx in range(df_creep.shape[1]):
try:
# Extract the column as a sample time series
sample_series = df_creep.iloc[:, col_idx].values
# Check for and filter out any NaN values
valid_indices = ~np.isnan(sample_series)
if not np.any(valid_indices):
print(f"Skipping column {col_idx} - no valid data")
continue
# Keep only valid data and corresponding time points
valid_series = sample_series[valid_indices]
valid_times = time_values[valid_indices]
# Store sequences if they're long enough
if len(valid_series) > target_len + 1: # Need at least target_len+1 points
creep_sequences.append(valid_series)
time_points.append(valid_times)
else:
print(f"Skipping column {col_idx} - insufficient data points ({len(valid_series)})")
except Exception as e:
print(f"Error processing column {col_idx}: {str(e)}")
continue
# Log data shape
print(f"Extracted {len(creep_sequences)} valid creep sequences")
# Ensure we have same number of feature rows as creep sequences
if len(creep_sequences) != len(df_features):
print(f"Warning: Number of valid sequences ({len(creep_sequences)}) doesn't match feature count ({len(df_features)})")
# If we have more features than sequences, truncate features
if len(creep_sequences) < len(df_features):
df_features = df_features.iloc[:len(creep_sequences)]
print(f"Truncated features to {len(df_features)} rows")
else:
# If we have more sequences than features, truncate sequences
creep_sequences = creep_sequences[:len(df_features)]
time_points = time_points[:len(df_features)]
print(f"Truncated sequences to {len(creep_sequences)}")
# Check if we have at least one sequence
if len(creep_sequences) == 0:
raise ValueError("No valid sequences extracted. Check data format and filtering.")
# Normalize features
feature_scaler = StandardScaler()
normalized_features = feature_scaler.fit_transform(df_features)
# Import or define the CreepScaler class for consistency with llm_predict.py
class CreepScaler:
def __init__(self, factor=1000):
self.factor = factor
self.mean_ = 0 # Default to no mean shift
self.scale_ = factor # Use factor as scale
self.is_standard_scaler = False
def transform(self, X):
if isinstance(X, np.ndarray):
if self.is_standard_scaler:
return (X - self.mean_) / self.scale_
return X / self.factor
return np.array(X) / self.factor
def inverse_transform(self, X):
if isinstance(X, np.ndarray):
if self.is_standard_scaler:
return (X * self.scale_) + self.mean_
return X * self.factor
return np.array(X) * self.factor
# Create a creep scaler that divides by 1000
creep_scaler = CreepScaler(factor=1000)
# Apply normalization to sequences
normalized_creep_sequences = []
for seq in creep_sequences:
normalized_seq = creep_scaler.transform(np.array(seq).reshape(-1, 1)).flatten()
normalized_creep_sequences.append(normalized_seq)
# Normalize time points (log scale to handle large time values)
normalized_time_points = []
for seq in time_points:
normalized_seq = np.log1p(np.array(seq)) # log1p to handle zeros
normalized_time_points.append(normalized_seq)
# Print validation information
print(f"Final dataset: {len(normalized_creep_sequences)} sequences")
print(f"First sequence length: {len(normalized_creep_sequences[0])} time points")
# Create dataset
dataset = LLMConcreteCreepDataset(
normalized_creep_sequences,
normalized_time_points,
normalized_features,
target_len
)
# If dataset is empty, raise an error
if len(dataset) == 0:
raise ValueError("Dataset is empty. Check the data preparation process.")
# Calculate split sizes
train_ratio = 1.0 - (test_size + val_size)
train_size = int(len(dataset) * train_ratio)
val_size_samples = int(len(dataset) * val_size)
test_size_samples = len(dataset) - train_size - val_size_samples
# Split into train, validation, and test sets using random_split
print(f"Splitting dataset into {train_ratio*100:.1f}% train, {val_size*100:.1f}% validation, {test_size*100:.1f}% test")
print(f"Train: {train_size} samples, Validation: {val_size_samples} samples, Test: {test_size_samples} samples")
train_dataset, val_dataset, test_dataset = torch.utils.data.random_split(
dataset, [train_size, val_size_samples, test_size_samples]
)
return train_dataset, val_dataset, test_dataset, feature_scaler, creep_scaler
# Positional Encoding
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
# x: [batch_size, seq_len, d_model]
return x + self.pe[:x.size(1), :].unsqueeze(0)
# Feature Encoder for static features
class FeatureEncoder(nn.Module):
def __init__(self, input_dim, hidden_dim, dropout=0.1):
super(FeatureEncoder, self).__init__()
# Original encoding path
self.fc1 = nn.Linear(input_dim, hidden_dim * 2)
self.ln1 = nn.LayerNorm(hidden_dim * 2)
self.fc2 = nn.Linear(hidden_dim * 2, hidden_dim)
self.ln2 = nn.LayerNorm(hidden_dim)
# New feature-wise projection (each feature to dim 16)
self.feature_projection = nn.Linear(1, 16)
# Ensure feature attention is configured correctly
feature_embed_dim = 16
# For 16 dimensions, valid num_heads are: 1, 2, 4, 8, 16
feature_heads = 4 # 16 is divisible by 4
# Attention for parallel feature processing
self.feature_attention = nn.MultiheadAttention(
embed_dim=feature_embed_dim,
num_heads=feature_heads,
dropout=dropout,
batch_first=True
)
# For batch attention, first choose the embedding dimension
# Make it a power of 2 for compatibility with many head configurations
batch_embed_dim = 16 # Fixed safe value, divisible by many head counts
# Now choose heads that divide evenly into the embed_dim
batch_heads = 4 # 16 is divisible by 4
# Always project input to the fixed batch_embed_dim
self.batch_projection = nn.Linear(input_dim, batch_embed_dim)
# Batch-wise attention with safe values
self.batch_attention = nn.MultiheadAttention(
embed_dim=batch_embed_dim,
num_heads=batch_heads,
dropout=dropout,
batch_first=True
)
# Layer norms for attention outputs
self.feature_ln = nn.LayerNorm(16)
self.batch_ln = nn.LayerNorm(batch_embed_dim)
# Integration layer - combines original and new paths
self.integration = nn.Linear(hidden_dim + 16 * input_dim + batch_embed_dim, hidden_dim)
self.integration_ln = nn.LayerNorm(hidden_dim)
self.dropout = nn.Dropout(dropout)
self.relu = nn.ReLU()
# Store dimensions for debugging
self.input_dim = input_dim
self.batch_embed_dim = batch_embed_dim
self.batch_heads = batch_heads
print(f"FeatureEncoder initialized with: input_dim={input_dim}, batch_embed_dim={batch_embed_dim}, batch_heads={batch_heads}")
def forward(self, x):
# x: [batch_size, input_dim]
batch_size, input_dim = x.size()
# Original path
original = self.fc1(x)
original = self.ln1(original)
original = self.relu(original)
original = self.dropout(original)
original = self.fc2(original)
original = self.ln2(original)
original = self.relu(original)
# Feature-wise projection path
# Reshape to process each feature separately
features = x.view(batch_size, input_dim, 1) # [batch_size, input_dim, 1]
features_projected = self.feature_projection(features) # [batch_size, input_dim, 16]
# Feature-wise attention
feature_attn_out, _ = self.feature_attention(
features_projected,
features_projected,
features_projected
) # [batch_size, input_dim, 16]
feature_attn_out = self.feature_ln(feature_attn_out + features_projected) # Add & Norm
# Apply projection to make input_dim compatible with attention
x_proj = self.batch_projection(x)
# Batch-wise attention
batch_attn_out, _ = self.batch_attention(
x_proj.unsqueeze(1), # [batch_size, 1, batch_embed_dim]
x_proj.unsqueeze(1),
x_proj.unsqueeze(1)
) # [batch_size, 1, batch_embed_dim]
batch_attn_out = self.batch_ln(batch_attn_out.squeeze(1) + x_proj) # Add & Norm
# Reshape feature attention output to concatenate
feature_attn_flat = feature_attn_out.reshape(batch_size, -1) # [batch_size, input_dim * 16]
# Concatenate all processed features
combined = torch.cat([original, feature_attn_flat, batch_attn_out], dim=1)
# Final integration
output = self.integration(combined)
output = self.integration_ln(output)
output = self.relu(output)
return output
# Self-Attention Block
class SelfAttention(nn.Module):
def __init__(self, d_model, num_heads, dropout=0.1):
super(SelfAttention, self).__init__()
self.d_model = d_model
self.num_heads = num_heads
self.head_dim = d_model // num_heads
assert self.head_dim * num_heads == d_model, "d_model must be divisible by num_heads"
# Multi-head attention
self.attention = nn.MultiheadAttention(
embed_dim=d_model,
num_heads=num_heads,
dropout=dropout,
batch_first=True
)
# Layer normalization and dropout
self.layer_norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, attention_mask=None, key_padding_mask=None):
# x: [batch_size, seq_len, d_model]
# Self-attention with residual connection
attn_output, _ = self.attention(
query=x,
key=x,
value=x,
attn_mask=attention_mask,
key_padding_mask=key_padding_mask
)
# Add & Norm
x = x + self.dropout(attn_output)
x = self.layer_norm(x)
return x
# Feed-Forward Block
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super(FeedForward, self).__init__()
self.linear1 = nn.Linear(d_model, d_ff)
self.linear2 = nn.Linear(d_ff, d_model)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, x):
# x: [batch_size, seq_len, d_model]
# FFN with residual connection
ff_output = self.linear1(x)
ff_output = self.relu(ff_output)
ff_output = self.dropout(ff_output)
ff_output = self.linear2(ff_output)
# Add & Norm
x = x + self.dropout(ff_output)
x = self.layer_norm(x)
return x
# Transformer Encoder Layer
class EncoderLayer(nn.Module):
def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
super(EncoderLayer, self).__init__()
self.self_attention = SelfAttention(d_model, num_heads, dropout)
self.feed_forward = FeedForward(d_model, d_ff, dropout)
def forward(self, x, attention_mask=None, key_padding_mask=None):
# x: [batch_size, seq_len, d_model]
# Self-attention block
x = self.self_attention(x, attention_mask, key_padding_mask)
# Feed-forward block
x = self.feed_forward(x)
return x
# LLM-Style Concrete Creep Transformer
class LLMConcreteModel(nn.Module):
def __init__(
self,
feature_dim,
d_model=128,
num_layers=6,
num_heads=8,
d_ff=512,
dropout=0.1,
target_len=1,
pooling_method='attention' # Options: 'mean', 'max', 'attention', 'weighted', 'hybrid'
):
super(LLMConcreteModel, self).__init__()
# Model dimensions
self.d_model = d_model
self.target_len = target_len
self.pooling_method = pooling_method
# Input embedding layers
self.creep_embedding = nn.Linear(1, d_model)
self.time_embedding = nn.Linear(1, d_model) if True else None # Optional time embedding
self.feature_encoder = FeatureEncoder(feature_dim, d_model, dropout)
# Positional encoding
self.positional_encoding = PositionalEncoding(d_model)
# Encoder layers
self.encoder_layers = nn.ModuleList([
EncoderLayer(d_model, num_heads, d_ff, dropout)
for _ in range(num_layers)
])
# Attention pooling layer for sequence tokens
self.attention_pooling = nn.Sequential(
nn.Linear(d_model, 1),
nn.Softmax(dim=1)
)
# Weighted pooling parameters
self.weighted_pool = nn.Linear(d_model, 1, bias=False)
# Hybrid pooling integration layer
self.hybrid_pooling_integration = nn.Linear(d_model * 3, d_model)
# Output layers for prediction
self.predictor = nn.Sequential(
nn.Linear(d_model, d_model),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(d_model, target_len)
)
# Integration of features with sequence
self.feature_integration = nn.Linear(d_model * 2, d_model)
# Layer normalization
self.layer_norm = nn.LayerNorm(d_model)
# Dropout
self.dropout = nn.Dropout(dropout)
def forward(self, creep_history, features, lengths, time_history=None):
# creep_history: [batch_size, max_seq_len]
# features: [batch_size, feature_dim]
# lengths: [batch_size] - actual sequence lengths
# time_history: [batch_size, max_seq_len] (optional)
# Get the device from input tensors to ensure consistent device usage
device = creep_history.device
batch_size, max_seq_len = creep_history.size()
# Create padding mask (1 for padding, 0 for actual values)
padding_mask = torch.arange(max_seq_len, device=device).unsqueeze(0) >= lengths.unsqueeze(1)
# Create attention mask to prevent looking at padding tokens
attention_mask = padding_mask.unsqueeze(1).expand(batch_size, max_seq_len, max_seq_len)
# Embed creep values
creep_embedded = self.creep_embedding(creep_history.unsqueeze(-1))
# Add time embedding if provided
if time_history is not None and self.time_embedding is not None:
time_embedded = self.time_embedding(time_history.unsqueeze(-1))
# Combine creep and time embeddings
embedded = creep_embedded + time_embedded
else:
embedded = creep_embedded
# Add positional encoding
embedded = self.positional_encoding(embedded)
# Apply dropout
embedded = self.dropout(embedded)
# Process feature data
feature_encoded = self.feature_encoder(features) # [batch_size, d_model]
# Pass through encoder layers
encoder_output = embedded
for layer in self.encoder_layers:
encoder_output = layer(encoder_output, key_padding_mask=padding_mask)
# USE ALL TOKENS: Apply pooling to aggregate information from all tokens
# Create a mask for padding (1 for real tokens, 0 for padding)
mask = ~padding_mask # [batch_size, seq_len]
if self.pooling_method == 'mean':
# Mean pooling with mask to handle variable sequence lengths
# Sum all non-padding token embeddings and divide by sequence length
mask_expanded = mask.unsqueeze(-1).float() # [batch_size, seq_len, 1]
context_vectors = torch.sum(encoder_output * mask_expanded, dim=1) / torch.sum(mask_expanded, dim=1)
elif self.pooling_method == 'max':
# Max pooling with mask to handle variable sequence lengths
# Use a large negative number for padding tokens
masked_output = encoder_output.clone()
masked_output[padding_mask.unsqueeze(-1).expand_as(masked_output)] = float('-inf')
context_vectors = torch.max(masked_output, dim=1)[0]
elif self.pooling_method == 'attention':
# Attention pooling
# Calculate attention weights for each token
attn_weights = self.attention_pooling(encoder_output) # [batch_size, seq_len, 1]
# Zero out attention for padding tokens
attn_weights = attn_weights.masked_fill(padding_mask.unsqueeze(-1), 0)
# Normalize weights to sum to 1 (per batch)
attn_weights = attn_weights / (attn_weights.sum(dim=1, keepdim=True) + 1e-8)
# Weighted sum of token embeddings
context_vectors = torch.sum(encoder_output * attn_weights, dim=1)
elif self.pooling_method == 'weighted':
# Weighted pooling considering sequence position
# Higher weights for later positions (more recent tokens)
position_weights = self.weighted_pool(encoder_output) # [batch_size, seq_len, 1]
# Apply softmax to get normalized weights
position_weights = torch.softmax(position_weights, dim=1)
# Zero out weights for padding tokens
position_weights = position_weights.masked_fill(padding_mask.unsqueeze(-1), 0)
# Weighted sum of token embeddings
context_vectors = torch.sum(encoder_output * position_weights, dim=1)
elif self.pooling_method == 'hybrid':
# Hybrid pooling: combine multiple pooling methods
# 1. Mean pooling
mask_expanded = mask.unsqueeze(-1).float()
mean_vectors = torch.sum(encoder_output * mask_expanded, dim=1) / torch.sum(mask_expanded, dim=1)
# 2. Attention pooling
attn_weights = self.attention_pooling(encoder_output)
attn_weights = attn_weights.masked_fill(padding_mask.unsqueeze(-1), 0)
attn_weights = attn_weights / (attn_weights.sum(dim=1, keepdim=True) + 1e-8)
attn_vectors = torch.sum(encoder_output * attn_weights, dim=1)
# 3. Last token pooling (traditional approach)
last_indices = (lengths - 1).clamp(min=0)
batch_indices = torch.arange(batch_size, device=device)
last_vectors = encoder_output[batch_indices, last_indices]
# Combine all pooling methods with a learnable integration
combined_vectors = torch.cat([mean_vectors, attn_vectors, last_vectors], dim=1)
context_vectors = self.hybrid_pooling_integration(combined_vectors)
context_vectors = torch.tanh(context_vectors)
else:
# Default: use a combination of mean and attention
# Mean pooling component
mask_expanded = mask.unsqueeze(-1).float()
mean_vectors = torch.sum(encoder_output * mask_expanded, dim=1) / torch.sum(mask_expanded, dim=1)
# Attention pooling component
attn_weights = self.attention_pooling(encoder_output)
attn_weights = attn_weights.masked_fill(padding_mask.unsqueeze(-1), 0)
attn_weights = attn_weights / (attn_weights.sum(dim=1, keepdim=True) + 1e-8)
attn_vectors = torch.sum(encoder_output * attn_weights, dim=1)
# Combine both pooling methods
context_vectors = (mean_vectors + attn_vectors) / 2
# Combine context with features
combined = torch.cat([context_vectors, feature_encoded], dim=1) # [batch_size, d_model*2]
integrated = self.feature_integration(combined) # [batch_size, d_model]
integrated = torch.tanh(integrated)
# Final layer normalization
integrated = self.layer_norm(integrated)
# Generate predictions
predictions = self.predictor(integrated) # [batch_size, target_len]
return predictions
# Function to create padding mask for variable length sequences
def create_padding_mask(lengths, max_len):
"""
Create a mask for padding tokens (1 for padding, 0 for actual values)
Args:
lengths: Tensor of sequence lengths [batch_size]
max_len: Maximum sequence length
Returns:
Padding mask [batch_size, max_len]
"""
batch_size = lengths.size(0)
mask = torch.arange(max_len).unsqueeze(0) >= lengths.unsqueeze(1)
return mask
# Train the model
def train_model(model, train_loader, optimizer, criterion, device, clip=1.0):
model.train()
epoch_loss = 0
num_batches = 0
for batch_idx, batch in enumerate(train_loader):
try:
if len(batch) == 5: # With time data
histories, targets, features, times, lengths = [item.to(device) for item in batch]
# Forward pass
optimizer.zero_grad()
outputs = model(histories, features, lengths, times)
else: # Without time data
histories, targets, features, lengths = [item.to(device) for item in batch]
# Forward pass
optimizer.zero_grad()
outputs = model(histories, features, lengths)
# Calculate loss
loss = criterion(outputs, targets)
# Backward pass
loss.backward()
# Clip gradients
torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
optimizer.step()
epoch_loss += loss.item()
num_batches += 1
except Exception as e:
print(f"Error in batch {batch_idx}: {str(e)}")
continue
return epoch_loss / max(1, num_batches)
# Evaluate the model
def evaluate_model(model, test_loader, criterion, device):
model.eval()
epoch_loss = 0
num_batches = 0
# For calculating MAPE and MAE
all_targets = []
all_outputs = []
with torch.no_grad():
for batch_idx, batch in enumerate(test_loader):
try:
if len(batch) == 5: # With time data
histories, targets, features, times, lengths = [item.to(device) for item in batch]
outputs = model(histories, features, lengths, times)
else: # Without time data
histories, targets, features, lengths = [item.to(device) for item in batch]
outputs = model(histories, features, lengths)
# Calculate loss
loss = criterion(outputs, targets)
epoch_loss += loss.item()
num_batches += 1
# Store targets and outputs for MAPE calculation
all_targets.append(targets.cpu())
all_outputs.append(outputs.cpu())
except Exception as e:
print(f"Error in evaluation batch {batch_idx}: {str(e)}")
continue
# Calculate MAPE and MAE if we have data
mape = None
mae = None
if all_targets and all_outputs:
try:
# Concatenate all batches
all_targets = torch.cat(all_targets)
all_outputs = torch.cat(all_outputs)
# Calculate MAE (Mean Absolute Error)
mae = torch.abs(all_targets - all_outputs).mean().item()
# Calculate MAPE, avoiding division by zero
# Add small epsilon to avoid division by zero
epsilon = 1e-8
abs_percentage_errors = torch.abs((all_targets - all_outputs) / (all_targets + epsilon)) * 100
# Filter out invalid values (where target is very close to zero)
valid_indices = torch.abs(all_targets) > epsilon
if valid_indices.sum() > 0:
mape = abs_percentage_errors[valid_indices].mean().item()
else:
mape = float('nan')
except Exception as e:
print(f"Error calculating metrics: {str(e)}")
mape = float('nan')
mae = float('nan')
return epoch_loss / max(1, num_batches), mape, mae
# Function to predict using the full history
def predict_with_full_history(model, creep_history, features, creep_scaler, device, time_history=None):
model.eval()
with torch.no_grad():
# Convert inputs to tensors
creep_tensor = torch.FloatTensor(creep_history).unsqueeze(0).to(device) # [1, seq_len]
features_tensor = torch.FloatTensor(features).unsqueeze(0).to(device) # [1, feature_dim]
lengths = torch.tensor([len(creep_history)]).to(device) # [1]
if time_history is not None:
time_tensor = torch.FloatTensor(time_history).unsqueeze(0).to(device) # [1, seq_len]
predictions = model(creep_tensor, features_tensor, lengths, time_tensor)
else:
predictions = model(creep_tensor, features_tensor, lengths)
# Convert predictions to numpy and denormalize
predictions_np = predictions.cpu().numpy()[0] # [target_len]
predictions_denorm = creep_scaler.inverse_transform(
predictions_np.reshape(-1, 1)
).flatten()
return predictions_denorm
# Visualize predictions for a test sample
def visualize_predictions(model, test_loader, creep_scaler, device, sample_idx=0):
# Get a batch from the test loader
for i, batch in enumerate(test_loader):
if i == sample_idx // test_loader.batch_size:
idx_in_batch = sample_idx % test_loader.batch_size
if len(batch) == 5: # With time data
histories, targets, features, times, lengths = batch
history = histories[idx_in_batch, :lengths[idx_in_batch]].numpy()
time_history = times[idx_in_batch, :lengths[idx_in_batch]].numpy()
feature = features[idx_in_batch].numpy()
target = targets[idx_in_batch].numpy()
# Get predictions
predictions = predict_with_full_history(
model, history, feature, creep_scaler, device, time_history
)
# Get actual time values (denormalize from log scale)
time_values = np.exp(time_history) - 1 # Reverse of log1p
else: # Without time data
histories, targets, features, lengths = batch
history = histories[idx_in_batch, :lengths[idx_in_batch]].numpy()
feature = features[idx_in_batch].numpy()
target = targets[idx_in_batch].numpy()
# Get predictions
predictions = predict_with_full_history(
model, history, feature, creep_scaler, device
)
# Create sequential time steps for plotting
time_values = np.arange(1, len(history) + 1)
# Denormalize target and history
target_denorm = creep_scaler.inverse_transform(
target.reshape(-1, 1)
).flatten()
history_denorm = creep_scaler.inverse_transform(
history.reshape(-1, 1)
).flatten()
# Get time steps for predictions and targets
# If we have actual time values, use the last time point plus regular intervals
history_time = time_values
if len(time_values) > 0:
# If we have time data, we need to extrapolate for prediction times
time_step = 1.0
if len(time_values) > 1:
# Estimate time step from the last two points
time_step = time_values[-1] - time_values[-2]
# Generate future time points for predictions/targets
target_time = np.array([time_values[-1] + time_step * (i+1) for i in range(len(target))])
pred_time = np.array([time_values[-1] + time_step * (i+1) for i in range(len(predictions))])
else:
# If no time data, use sequential indices
target_time = np.arange(len(history) + 1, len(history) + len(target) + 1)
pred_time = np.arange(len(history) + 1, len(history) + len(predictions) + 1)
# Plot results
plt.figure(figsize=(10, 6))
plt.plot(history_time, history_denorm, 'b-', label='Historical Data')
plt.plot(target_time, target_denorm, 'g-', label='Actual Future')
plt.plot(pred_time, predictions, 'r--', label='Predictions')
plt.legend()
plt.title('Concrete Creep Prediction with Full History')
plt.xlabel('Time')
plt.ylabel('Creep Value')
plt.grid(True)
plt.savefig('llm_prediction_results.png')
plt.close()
return history_denorm, target_denorm, predictions
print("Sample index out of range")
return None, None, None
# Utility function to examine data structure
def examine_data_structure():
"""
Examine the structure of the creep and feature files
to help with debugging and data understanding
"""
print("Examining data structure...")
# Load the creep file
try:
df_creep = pd.read_excel(EXCEL_CREEP_FILE)
print(f"\nCreep file shape: {df_creep.shape}")
print(f"Format: {df_creep.shape[0]} time points (rows) × {df_creep.shape[1]} samples (columns)")
# Check if first column might be time values
first_col = df_creep.columns[0]
if first_col in ['time', 'Time', 'TIME', 't', 'T', 'day', 'Day', 'DAY', 'd', 'D'] or str(first_col).lower().startswith(('time', 'day')):
print(f"First column '{first_col}' recognized as time values")
print(f"Time values sample: {df_creep.iloc[:5, 0].tolist()}")
print(f"Actual samples start from column 1")
else:
print(f"First column '{first_col}' not recognized as time, but treating rows as time points")
print(f"Assuming all columns are samples")
# Show a sample of the data
print(f"First 5 rows (time points) and 3 columns (samples):")
print(df_creep.iloc[:5, :3])
# Count NaN values
nan_count = df_creep.isna().sum().sum()
print(f"Total NaN values: {nan_count}")
except Exception as e:
print(f"Error examining creep file: {str(e)}")
# Load the feature file
try:
df_features = pd.read_excel(EXCEL_FEATURE_FILE, sheet_name='Sheet2')
print(f"\nFeature file shape: {df_features.shape}")
print(f"Feature file columns: {df_features.columns.tolist()}")
print(f"Feature sample (first 3 rows):")
print(df_features.iloc[:3])
# Ensure it has the right number of rows to match sample count
if df_features.shape[0] != df_creep.shape[1]:
print(f"WARNING: Feature count ({df_features.shape[0]} rows) does not match sample count in creep file ({df_creep.shape[1]} columns)")
else:
print(f"Feature rows ({df_features.shape[0]}) matches sample count in creep file ({df_creep.shape[1]} columns)")
except Exception as e:
print(f"Error examining feature file: {str(e)}")
print("\nData examination complete.")
# Add a function to calculate detailed performance metrics on test data
def calculate_detailed_metrics(model, test_loader, creep_scaler, device):
"""
Calculate detailed performance metrics on the test dataset.
Returns actual and predicted values in their original scale along with metrics.
"""
model.eval()
all_targets_norm = []
all_outputs_norm = []
all_targets_denorm = []
all_outputs_denorm = []
with torch.no_grad():
for batch_idx, batch in enumerate(test_loader):
try:
if len(batch) == 5: # With time data
histories, targets, features, times, lengths = [item.to(device) for item in batch]
outputs = model(histories, features, lengths, times)
else: # Without time data
histories, targets, features, lengths = [item.to(device) for item in batch]
outputs = model(histories, features, lengths)
# Store normalized values
all_targets_norm.append(targets.cpu())
all_outputs_norm.append(outputs.cpu())
# Denormalize for actual metrics
for i in range(len(targets)):
target = targets[i].cpu().numpy()
output = outputs[i].cpu().numpy()
# Reshape for inverse_transform
target_denorm = creep_scaler.inverse_transform(target.reshape(-1, 1)).flatten()
output_denorm = creep_scaler.inverse_transform(output.reshape(-1, 1)).flatten()
all_targets_denorm.extend(target_denorm)
all_outputs_denorm.extend(output_denorm)
except Exception as e:
print(f"Error in batch {batch_idx}: {str(e)}")
continue
# Convert to numpy arrays
all_targets_denorm = np.array(all_targets_denorm)
all_outputs_denorm = np.array(all_outputs_denorm)
# Calculate metrics on denormalized data
mse = np.mean((all_targets_denorm - all_outputs_denorm) ** 2)
rmse = np.sqrt(mse)
mae = np.mean(np.abs(all_targets_denorm - all_outputs_denorm))
# Calculate MAPE, avoiding division by zero
epsilon = 1e-8
mask = np.abs(all_targets_denorm) > epsilon
mape = np.mean(np.abs((all_targets_denorm[mask] - all_outputs_denorm[mask]) / (all_targets_denorm[mask]))) * 100
# Calculate R²
ss_total = np.sum((all_targets_denorm - np.mean(all_targets_denorm)) ** 2)
ss_residual = np.sum((all_targets_denorm - all_outputs_denorm) ** 2)
r_squared = 1 - (ss_residual / ss_total) if ss_total > 0 else 0
# Print detailed metrics
print("\n===== Detailed Performance Metrics =====")
print(f"MSE: {mse:.6f}")
print(f"RMSE: {rmse:.6f}")
print(f"MAE: {mae:.6f}")
print(f"MAPE: {mape:.2f}%")
print(f"R²: {r_squared:.6f}")
return {
"targets": all_targets_denorm,
"predictions": all_outputs_denorm,
"mse": mse,
"rmse": rmse,
"mae": mae,
"mape": mape,
"r_squared": r_squared
}
# Main function
def main():
print("\n" + "="*80)
print("CONCRETE CREEP PREDICTION MODEL WITH LLM-STYLE FULL HISTORY PROCESSING")
print("="*80 + "\n")
# Parameters - Updated with Bayesian optimization results
TARGET_LEN = 1 # Length of prediction horizon
D_MODEL = 192 # Model dimension (was 128)
NUM_LAYERS = 4 # Number of transformer layers (was 6)
NUM_HEADS = 4 # Number of attention heads (was 8)
BATCH_SIZE = 128 # Batch size (was 200)
LEARNING_RATE = 0.0001897931493931044 # Learning rate (was 0.001)
WEIGHT_DECAY = 5.552376124031933e-06 # Weight decay (was 1e-5)
DROPOUT = 0.056999223340150215 # Dropout rate for model initialization (new parameter)
NUM_EPOCHS = 200
POOLING_METHOD = 'hybrid' # Using the hybrid pooling method which combines multiple approaches
# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Using device: {device}")
# Set memory handling for GPU if available
if device.type == 'cuda':
print("Managing GPU memory settings...")
# Empty cache to start fresh
torch.cuda.empty_cache()
# Get GPU memory info
if hasattr(torch.cuda, 'get_device_properties'):
prop = torch.cuda.get_device_properties(device)
print(f"GPU: {prop.name} with {prop.total_memory / 1024**3:.2f} GB memory")
try:
# Examine data structure first for debugging
examine_data_structure()
# Prepare data
print("\nPreparing data...")
train_dataset, val_dataset, test_dataset, feature_scaler, creep_scaler = prepare_llm_data(
target_len=TARGET_LEN
)
print(f"Training samples: {len(train_dataset)}")
print(f"Validation samples: {len(val_dataset)}")
print(f"Testing samples: {len(test_dataset)}")
# Adjust batch size if needed
adjusted_batch_size = min(BATCH_SIZE, len(train_dataset), len(val_dataset), len(test_dataset))
if adjusted_batch_size < BATCH_SIZE:
print(f"Adjusting batch size from {BATCH_SIZE} to {adjusted_batch_size} due to small dataset")
BATCH_SIZE = adjusted_batch_size
# Create data loaders
print(f"Creating dataloaders with batch size {BATCH_SIZE}...")
train_loader = DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
collate_fn=collate_fn,
drop_last=False,
pin_memory=True if device.type == 'cuda' else False # Faster data transfer to GPU
)
val_loader = DataLoader(
val_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
collate_fn=collate_fn,
drop_last=False,
pin_memory=True if device.type == 'cuda' else False # Faster data transfer to GPU
)
test_loader = DataLoader(
test_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
collate_fn=collate_fn,
drop_last=False,
pin_memory=True if device.type == 'cuda' else False # Faster data transfer to GPU
)
# Get feature dimension
feature_dim = train_dataset[0][2].shape[0]
print(f"Feature dimension: {feature_dim}")
# Initialize model
print("\nInitializing model...")
print(f"Using pooling method: {POOLING_METHOD}")
model = LLMConcreteModel(
feature_dim=feature_dim,
d_model=D_MODEL,
num_layers=NUM_LAYERS,
num_heads=NUM_HEADS,
d_ff=D_MODEL * 4,
dropout=DROPOUT, # Using the optimized dropout value
target_len=TARGET_LEN,
pooling_method=POOLING_METHOD # Set the pooling method
)
# Move model to device
model = model.to(device)
print(f"Model parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
# Define optimizer and loss
optimizer = optim.AdamW(
model.parameters(),
lr=LEARNING_RATE,
weight_decay=WEIGHT_DECAY
)
criterion = nn.MSELoss()
# Learning rate scheduler
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode='min',
factor=0.5,
patience=5,
verbose=True
)
# Training loop
print("\nStarting training...")
train_losses = []
val_losses = []
val_mapes = [] # Track MAPE values
best_val_loss = float('inf')
for epoch in range(NUM_EPOCHS):
try:
# Train
train_loss = train_model(model, train_loader, optimizer, criterion, device)
train_losses.append(train_loss)
# Evaluate
val_loss, val_mape, val_mae = evaluate_model(model, val_loader, criterion, device)
val_losses.append(val_loss)
val_mapes.append(val_mape if val_mape is not None else float('nan'))
# Update learning rate
scheduler.step(val_loss)
# Print progress
print(f"Epoch {epoch+1}/{NUM_EPOCHS}, Train Loss: {train_loss:.6f}, Val Loss: {val_loss:.6f}, MAPE: {val_mape:.2f}%, MAE: {val_mae:.6f}")
# Save best model
if val_loss < best_val_loss:
best_val_loss = val_loss
torch.save(model.state_dict(), 'best_llm_model.pt')
print(f"Best model saved (Epoch {epoch+1})")
# Periodically clear GPU cache
if device.type == 'cuda' and (epoch + 1) % 5 == 0:
torch.cuda.empty_cache()
except RuntimeError as e:
if 'out of memory' in str(e).lower():
print(f"WARNING: GPU out of memory at epoch {epoch+1}. Attempting to recover...")
if device.type == 'cuda':
torch.cuda.empty_cache()
# Try reducing batch size
if BATCH_SIZE > 1:
BATCH_SIZE = BATCH_SIZE // 2
print(f"Reducing batch size to {BATCH_SIZE}")
# Recreate dataloaders with new batch size
train_loader = DataLoader(
train_dataset,
batch_size=BATCH_SIZE,
shuffle=True,
collate_fn=collate_fn,
drop_last=False,
pin_memory=True
)
val_loader = DataLoader(
val_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
collate_fn=collate_fn,
drop_last=False,
pin_memory=True
)
test_loader = DataLoader(
test_dataset,
batch_size=BATCH_SIZE,
shuffle=False,
collate_fn=collate_fn,
drop_last=False,
pin_memory=True
)
# Continue with reduced batch size
continue
else:
print("ERROR: Batch size already at minimum. Cannot recover.")
break
else:
print(f"ERROR during training: {str(e)}")
break
# Save final model at the last epoch
torch.save(model.state_dict(), 'final_llm_model.pt')
print(f"Final model saved at epoch {NUM_EPOCHS}")
# Plot loss curves with MAPE
print("\nPlotting loss curves and MAPE...")
# Create a figure with two subplots
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12))
# Plot losses on the first subplot
ax1.plot(train_losses, label='Training Loss')
ax1.plot(val_losses, label='Validation Loss')
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss (MSE)')
ax1.set_title('Training and Validation Loss')
ax1.legend()
ax1.grid(True)
# Plot MAPE on the second subplot
ax2.plot(val_mapes, 'r-', label='Validation MAPE')
ax2.set_xlabel('Epoch')
ax2.set_ylabel('MAPE (%)')
ax2.set_title('Validation Mean Absolute Percentage Error')
ax2.legend()
ax2.grid(True)
plt.tight_layout()
plt.savefig('llm_loss_and_mape_curves.png')
plt.close()
# Also save the traditional loss curve plot
plt.figure(figsize=(10, 6))
plt.plot(train_losses, label='Training Loss')
plt.plot(val_losses, label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training and Validation Loss (LLM Model)')
plt.legend()
plt.grid(True)
plt.savefig('llm_loss_curves.png')
plt.close()
#==================================================
# COMPREHENSIVE EVALUATION ON TEST SET
#==================================================
print("\n" + "="*80)
print("COMPREHENSIVE EVALUATION ON TEST SET")
print("="*80)
# Load final model
print("\nEvaluating final model...")
model.load_state_dict(torch.load('final_llm_model.pt', map_location=device))
# Calculate metrics for final model
final_test_loss, final_test_mape, final_test_mae = evaluate_model(model, test_loader, criterion, device)
print(f"Final model metrics - MSE: {final_test_loss:.6f}, MAPE: {final_test_mape:.2f}%, MAE: {final_test_mae:.6f}")
# Calculate detailed metrics for final model
print("\nDetailed metrics for final model:")
final_metrics = calculate_detailed_metrics(model, test_loader, creep_scaler, device)
# Visualize predictions for final model
for sample_idx in range(min(3, len(test_loader.dataset))):
history, target, predictions = visualize_predictions(
model, test_loader, creep_scaler, device, sample_idx=sample_idx
)
if history is not None:
print(f"\nSample {sample_idx+1} (Final Model):")
print(f"Target values: {target}")
print(f"Predictions: {predictions}")
plt.savefig(f'final_model_prediction_sample_{sample_idx+1}.png')
# Load best model
print("\nEvaluating best model...")
model.load_state_dict(torch.load('best_llm_model.pt', map_location=device))
# Calculate metrics for best model
best_test_loss, best_test_mape, best_test_mae = evaluate_model(model, test_loader, criterion, device)
print(f"Best model metrics - MSE: {best_test_loss:.6f}, MAPE: {best_test_mape:.2f}%, MAE: {best_test_mae:.6f}")
# Calculate detailed metrics for best model
print("\nDetailed metrics for best model:")
best_metrics = calculate_detailed_metrics(model, test_loader, creep_scaler, device)
# Visualize predictions for best model
for sample_idx in range(min(3, len(test_loader.dataset))):
history, target, predictions = visualize_predictions(
model, test_loader, creep_scaler, device, sample_idx=sample_idx
)
if history is not None:
print(f"\nSample {sample_idx+1} (Best Model):")
print(f"Target values: {target}")
print(f"Predictions: {predictions}")
plt.savefig(f'best_model_prediction_sample_{sample_idx+1}.png')
# Compare models
print("\n" + "="*50)
print("MODEL COMPARISON")
print("="*50)
print(f" Final Model Best Model")
print(f"MSE: {final_metrics['mse']:.6f} {best_metrics['mse']:.6f}")
print(f"RMSE: {final_metrics['rmse']:.6f} {best_metrics['rmse']:.6f}")
print(f"MAE: {final_metrics['mae']:.6f} {best_metrics['mae']:.6f}")
print(f"MAPE: {final_metrics['mape']:.2f}% {best_metrics['mape']:.2f}%")
print(f"R²: {final_metrics['r_squared']:.6f} {best_metrics['r_squared']:.6f}")
print("\nTraining and evaluation complete!")
except Exception as e:
print(f"\nERROR: {str(e)}")
import traceback
traceback.print_exc()
print("\nExiting due to error.")
if __name__ == "__main__":
main() |