Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import pickle
|
| 7 |
+
import os
|
| 8 |
+
import warnings
|
| 9 |
+
from lllm_model_all_token import LLMConcreteModel
|
| 10 |
+
|
| 11 |
+
# Optimize for deployment
|
| 12 |
+
warnings.filterwarnings('ignore')
|
| 13 |
+
torch.set_num_threads(2)
|
| 14 |
+
|
| 15 |
+
# Canva-style colors
|
| 16 |
+
CANVA_PURPLE = "#8B5CF6"
|
| 17 |
+
CANVA_LIGHT_PURPLE = "#A78BFA"
|
| 18 |
+
CANVA_DARK_PURPLE = "#7C3AED"
|
| 19 |
+
CANVA_BACKGROUND = "#FAFAFA"
|
| 20 |
+
CANVA_WHITE = "#FFFFFF"
|
| 21 |
+
|
| 22 |
+
# Set page config with Canva-style theme
|
| 23 |
+
st.set_page_config(
|
| 24 |
+
page_title="Concrete Creep Prediction",
|
| 25 |
+
page_icon="🏗️",
|
| 26 |
+
layout="centered",
|
| 27 |
+
initial_sidebar_state="collapsed"
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Custom CSS for Canva-style design
|
| 31 |
+
st.markdown(f"""
|
| 32 |
+
<style>
|
| 33 |
+
.main {{
|
| 34 |
+
background-color: {CANVA_BACKGROUND};
|
| 35 |
+
}}
|
| 36 |
+
|
| 37 |
+
.stApp {{
|
| 38 |
+
background-color: {CANVA_BACKGROUND};
|
| 39 |
+
}}
|
| 40 |
+
|
| 41 |
+
.css-1d391kg {{
|
| 42 |
+
background-color: {CANVA_WHITE};
|
| 43 |
+
padding: 2rem;
|
| 44 |
+
border-radius: 15px;
|
| 45 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 46 |
+
margin: 1rem 0;
|
| 47 |
+
}}
|
| 48 |
+
|
| 49 |
+
.stButton > button {{
|
| 50 |
+
background-color: {CANVA_PURPLE};
|
| 51 |
+
color: white;
|
| 52 |
+
border: none;
|
| 53 |
+
border-radius: 25px;
|
| 54 |
+
padding: 0.75rem 2rem;
|
| 55 |
+
font-weight: 600;
|
| 56 |
+
font-size: 16px;
|
| 57 |
+
transition: all 0.3s ease;
|
| 58 |
+
width: 100%;
|
| 59 |
+
}}
|
| 60 |
+
|
| 61 |
+
.stButton > button:hover {{
|
| 62 |
+
background-color: {CANVA_DARK_PURPLE};
|
| 63 |
+
transform: translateY(-2px);
|
| 64 |
+
box-shadow: 0 4px 12px rgba(139, 92, 246, 0.3);
|
| 65 |
+
}}
|
| 66 |
+
|
| 67 |
+
.stNumberInput > div > div > input {{
|
| 68 |
+
border-radius: 10px;
|
| 69 |
+
border: 2px solid #E5E7EB;
|
| 70 |
+
padding: 0.75rem;
|
| 71 |
+
}}
|
| 72 |
+
|
| 73 |
+
.stNumberInput > div > div > input:focus {{
|
| 74 |
+
border-color: {CANVA_PURPLE};
|
| 75 |
+
box-shadow: 0 0 0 3px rgba(139, 92, 246, 0.1);
|
| 76 |
+
}}
|
| 77 |
+
|
| 78 |
+
.metric-card {{
|
| 79 |
+
background: linear-gradient(135deg, {CANVA_PURPLE}, {CANVA_LIGHT_PURPLE});
|
| 80 |
+
color: white;
|
| 81 |
+
padding: 1.5rem;
|
| 82 |
+
border-radius: 15px;
|
| 83 |
+
text-align: center;
|
| 84 |
+
margin: 0.5rem 0;
|
| 85 |
+
}}
|
| 86 |
+
|
| 87 |
+
.result-card {{
|
| 88 |
+
background-color: {CANVA_WHITE};
|
| 89 |
+
padding: 2rem;
|
| 90 |
+
border-radius: 15px;
|
| 91 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 92 |
+
margin: 1rem 0;
|
| 93 |
+
}}
|
| 94 |
+
|
| 95 |
+
h1 {{
|
| 96 |
+
color: {CANVA_DARK_PURPLE};
|
| 97 |
+
text-align: center;
|
| 98 |
+
font-weight: 700;
|
| 99 |
+
margin-bottom: 2rem;
|
| 100 |
+
}}
|
| 101 |
+
|
| 102 |
+
h2, h3 {{
|
| 103 |
+
color: {CANVA_DARK_PURPLE};
|
| 104 |
+
font-weight: 600;
|
| 105 |
+
}}
|
| 106 |
+
|
| 107 |
+
.stSuccess {{
|
| 108 |
+
background-color: #10B981;
|
| 109 |
+
color: white;
|
| 110 |
+
border-radius: 10px;
|
| 111 |
+
}}
|
| 112 |
+
</style>
|
| 113 |
+
""", unsafe_allow_html=True)
|
| 114 |
+
|
| 115 |
+
# Simple CreepScaler class
|
| 116 |
+
class CreepScaler:
|
| 117 |
+
def __init__(self, factor=1000):
|
| 118 |
+
self.factor = factor
|
| 119 |
+
self.mean_ = 0
|
| 120 |
+
self.scale_ = factor
|
| 121 |
+
self.is_standard_scaler = False
|
| 122 |
+
|
| 123 |
+
def transform(self, X):
|
| 124 |
+
if self.is_standard_scaler:
|
| 125 |
+
return (X - self.mean_) / self.scale_
|
| 126 |
+
return X / self.factor
|
| 127 |
+
|
| 128 |
+
def inverse_transform(self, X):
|
| 129 |
+
if self.is_standard_scaler:
|
| 130 |
+
return (X * self.scale_) + self.mean_
|
| 131 |
+
return X * self.factor
|
| 132 |
+
|
| 133 |
+
@st.cache_resource
|
| 134 |
+
def load_model():
|
| 135 |
+
"""Load model and scalers"""
|
| 136 |
+
# Find model file
|
| 137 |
+
model_files = ['best_llm_model-17.pt', 'final_llm_model-5.pt']
|
| 138 |
+
model_path = None
|
| 139 |
+
for file in model_files:
|
| 140 |
+
if os.path.exists(file):
|
| 141 |
+
model_path = file
|
| 142 |
+
break
|
| 143 |
+
|
| 144 |
+
if model_path is None:
|
| 145 |
+
st.error("❌ Model file not found")
|
| 146 |
+
st.stop()
|
| 147 |
+
|
| 148 |
+
# Load scalers
|
| 149 |
+
try:
|
| 150 |
+
with open('scalers/feature_scaler.pkl', 'rb') as f:
|
| 151 |
+
feature_scaler = pickle.load(f)
|
| 152 |
+
|
| 153 |
+
try:
|
| 154 |
+
with open('scalers/creep_scaler.pkl', 'rb') as f:
|
| 155 |
+
creep_scaler = pickle.load(f)
|
| 156 |
+
except:
|
| 157 |
+
creep_scaler = CreepScaler(factor=1000)
|
| 158 |
+
|
| 159 |
+
try:
|
| 160 |
+
with open('scalers/time_values.pkl', 'rb') as f:
|
| 161 |
+
time_values = pickle.load(f)
|
| 162 |
+
except:
|
| 163 |
+
time_values = np.arange(1, 1001) # Default 1000 time points
|
| 164 |
+
|
| 165 |
+
except Exception as e:
|
| 166 |
+
st.error(f"❌ Error loading files: {e}")
|
| 167 |
+
st.stop()
|
| 168 |
+
|
| 169 |
+
# Load model
|
| 170 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 171 |
+
model = LLMConcreteModel(
|
| 172 |
+
feature_dim=3,
|
| 173 |
+
d_model=192,
|
| 174 |
+
num_layers=4,
|
| 175 |
+
num_heads=4,
|
| 176 |
+
d_ff=768,
|
| 177 |
+
dropout=0.057,
|
| 178 |
+
target_len=1,
|
| 179 |
+
pooling_method='hybrid'
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
try:
|
| 183 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 184 |
+
model = model.to(device)
|
| 185 |
+
model.eval()
|
| 186 |
+
except Exception as e:
|
| 187 |
+
st.error(f"❌ Error loading model: {e}")
|
| 188 |
+
st.stop()
|
| 189 |
+
|
| 190 |
+
return model, feature_scaler, creep_scaler, time_values, device
|
| 191 |
+
|
| 192 |
+
def predict_creep(model, features, time_values, feature_scaler, creep_scaler, device, max_days=365):
|
| 193 |
+
"""Simple prediction function"""
|
| 194 |
+
# Scale features
|
| 195 |
+
scaled_features = feature_scaler.transform(features)
|
| 196 |
+
scaled_features_tensor = torch.FloatTensor(scaled_features).to(device)
|
| 197 |
+
|
| 198 |
+
# Limit time values
|
| 199 |
+
pred_time_values = time_values[:max_days] if max_days < len(time_values) else time_values
|
| 200 |
+
|
| 201 |
+
predictions = [0.0] # Start with 0
|
| 202 |
+
scaled_predictions = [0.0]
|
| 203 |
+
|
| 204 |
+
with torch.no_grad():
|
| 205 |
+
for i in range(1, len(pred_time_values)):
|
| 206 |
+
history = np.array(scaled_predictions)
|
| 207 |
+
history_tensor = torch.FloatTensor(history).unsqueeze(0).to(device)
|
| 208 |
+
|
| 209 |
+
time_history = np.log1p(pred_time_values[:i])
|
| 210 |
+
time_tensor = torch.FloatTensor(time_history).unsqueeze(0).to(device)
|
| 211 |
+
|
| 212 |
+
length = torch.tensor([len(history)], device=device)
|
| 213 |
+
|
| 214 |
+
next_value = model(
|
| 215 |
+
creep_history=history_tensor,
|
| 216 |
+
features=scaled_features_tensor,
|
| 217 |
+
lengths=length,
|
| 218 |
+
time_history=time_tensor
|
| 219 |
+
).item()
|
| 220 |
+
|
| 221 |
+
scaled_predictions.append(next_value)
|
| 222 |
+
next_creep = creep_scaler.inverse_transform(np.array([[next_value]])).flatten()[0]
|
| 223 |
+
predictions.append(next_creep)
|
| 224 |
+
|
| 225 |
+
return np.array(predictions), pred_time_values
|
| 226 |
+
|
| 227 |
+
# Load model
|
| 228 |
+
model, feature_scaler, creep_scaler, time_values, device = load_model()
|
| 229 |
+
|
| 230 |
+
def get_base64_of_image(path):
|
| 231 |
+
"""Convert image to base64 string"""
|
| 232 |
+
import base64
|
| 233 |
+
try:
|
| 234 |
+
with open(path, "rb") as img_file:
|
| 235 |
+
return base64.b64encode(img_file.read()).decode()
|
| 236 |
+
except:
|
| 237 |
+
return ""
|
| 238 |
+
|
| 239 |
+
# App title with logo
|
| 240 |
+
st.markdown("""
|
| 241 |
+
<div style='text-align: center; padding: 2rem 0;'>
|
| 242 |
+
<div style='display: flex; justify-content: center; align-items: center; margin-bottom: 1.5rem; flex-wrap: wrap;'>
|
| 243 |
+
<img src='data:image/png;base64,{}' style='width: 120px; height: auto; max-height: 100px; margin-right: 1.5rem; margin-bottom: 1rem; border-radius: 10px; box-shadow: 0 4px 12px rgba(139, 92, 246, 0.2); object-fit: contain;'>
|
| 244 |
+
<div style='text-align: center;'>
|
| 245 |
+
<h1 style='margin: 0; color: {}; font-size: 2.5rem; font-weight: 700;'>🏗️ Concrete Creep Prediction</h1>
|
| 246 |
+
<p style='margin: 0; font-size: 18px; color: #6B7280; font-weight: 500;'>AI-Powered Concrete Analysis</p>
|
| 247 |
+
</div>
|
| 248 |
+
</div>
|
| 249 |
+
</div>
|
| 250 |
+
""".format(
|
| 251 |
+
get_base64_of_image("AI_logo.png"),
|
| 252 |
+
CANVA_DARK_PURPLE
|
| 253 |
+
), unsafe_allow_html=True)
|
| 254 |
+
|
| 255 |
+
# Input form in a clean card
|
| 256 |
+
with st.container():
|
| 257 |
+
st.markdown('<div class="css-1d391kg">', unsafe_allow_html=True)
|
| 258 |
+
|
| 259 |
+
st.markdown("### 📝 Enter Concrete Properties")
|
| 260 |
+
|
| 261 |
+
col1, col2 = st.columns(2)
|
| 262 |
+
|
| 263 |
+
with col1:
|
| 264 |
+
density = st.number_input(
|
| 265 |
+
"Density (kg/m³)",
|
| 266 |
+
min_value=2000.0,
|
| 267 |
+
max_value=3000.0,
|
| 268 |
+
value=2490.0,
|
| 269 |
+
step=10.0
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
fc = st.number_input(
|
| 273 |
+
"Compressive Strength (ksc)",
|
| 274 |
+
min_value=10.0,
|
| 275 |
+
max_value=1000.0,
|
| 276 |
+
value=670.0,
|
| 277 |
+
step=10.0
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
with col2:
|
| 281 |
+
e_modulus = st.number_input(
|
| 282 |
+
"Elastic Modulus (ksc)",
|
| 283 |
+
min_value=10000.0,
|
| 284 |
+
max_value=1000000.0,
|
| 285 |
+
value=436000.0,
|
| 286 |
+
step=1000.0
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 290 |
+
|
| 291 |
+
# Predict button
|
| 292 |
+
if st.button("🚀 Predict Creep Strain"):
|
| 293 |
+
# Set default prediction days
|
| 294 |
+
max_days = 365
|
| 295 |
+
|
| 296 |
+
# Create features
|
| 297 |
+
features_dict = {
|
| 298 |
+
'Density': density,
|
| 299 |
+
'fc': fc,
|
| 300 |
+
'E': e_modulus
|
| 301 |
+
}
|
| 302 |
+
df_features = pd.DataFrame([features_dict])
|
| 303 |
+
|
| 304 |
+
# Run prediction
|
| 305 |
+
with st.spinner("🔄 Predicting..."):
|
| 306 |
+
try:
|
| 307 |
+
predictions, pred_time_values = predict_creep(
|
| 308 |
+
model, df_features, time_values,
|
| 309 |
+
feature_scaler, creep_scaler, device, max_days
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
# Results
|
| 313 |
+
st.markdown('<div class="result-card">', unsafe_allow_html=True)
|
| 314 |
+
|
| 315 |
+
# Key metrics
|
| 316 |
+
col1, col2 = st.columns(2)
|
| 317 |
+
with col1:
|
| 318 |
+
st.markdown(f"""
|
| 319 |
+
<div class="metric-card">
|
| 320 |
+
<h3>{predictions[-1]:.1f}</h3>
|
| 321 |
+
<p>Final Creep (µε)</p>
|
| 322 |
+
</div>
|
| 323 |
+
""", unsafe_allow_html=True)
|
| 324 |
+
|
| 325 |
+
with col2:
|
| 326 |
+
st.markdown(f"""
|
| 327 |
+
<div class="metric-card">
|
| 328 |
+
<h3>{np.max(predictions):.1f}</h3>
|
| 329 |
+
<p>Maximum Creep (µε)</p>
|
| 330 |
+
</div>
|
| 331 |
+
""", unsafe_allow_html=True)
|
| 332 |
+
|
| 333 |
+
# Simple plot
|
| 334 |
+
st.markdown("### 📊 Creep Strain Over Time")
|
| 335 |
+
|
| 336 |
+
# Set plot style to match Canva theme
|
| 337 |
+
plt.style.use('default')
|
| 338 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 339 |
+
fig.patch.set_facecolor('white')
|
| 340 |
+
|
| 341 |
+
ax.plot(pred_time_values, predictions,
|
| 342 |
+
color=CANVA_PURPLE, linewidth=3, alpha=0.8)
|
| 343 |
+
ax.fill_between(pred_time_values, predictions,
|
| 344 |
+
alpha=0.2, color=CANVA_LIGHT_PURPLE)
|
| 345 |
+
|
| 346 |
+
ax.set_xlabel('Time (days)', fontsize=12, color='#374151')
|
| 347 |
+
ax.set_ylabel('Creep Strain (µε)', fontsize=12, color='#374151')
|
| 348 |
+
ax.grid(True, alpha=0.3, color='#E5E7EB')
|
| 349 |
+
ax.set_facecolor('#FAFAFA')
|
| 350 |
+
|
| 351 |
+
# Remove top and right spines
|
| 352 |
+
ax.spines['top'].set_visible(False)
|
| 353 |
+
ax.spines['right'].set_visible(False)
|
| 354 |
+
ax.spines['left'].set_color('#E5E7EB')
|
| 355 |
+
ax.spines['bottom'].set_color('#E5E7EB')
|
| 356 |
+
|
| 357 |
+
plt.tight_layout()
|
| 358 |
+
st.pyplot(fig)
|
| 359 |
+
|
| 360 |
+
# Download data
|
| 361 |
+
results_df = pd.DataFrame({
|
| 362 |
+
'Time (days)': pred_time_values,
|
| 363 |
+
'Creep Strain (µε)': predictions
|
| 364 |
+
})
|
| 365 |
+
|
| 366 |
+
csv = results_df.to_csv(index=False)
|
| 367 |
+
st.download_button(
|
| 368 |
+
label="💾 Download Results",
|
| 369 |
+
data=csv,
|
| 370 |
+
file_name="creep_predictions.csv",
|
| 371 |
+
mime="text/csv"
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 375 |
+
|
| 376 |
+
except Exception as e:
|
| 377 |
+
st.error(f"❌ Prediction failed: {e}")
|
| 378 |
+
|
| 379 |
+
# Simple footer
|
| 380 |
+
st.markdown("""
|
| 381 |
+
<div style='text-align: center; padding: 2rem 0; color: #9CA3AF;'>
|
| 382 |
+
<p>🏗️ Concrete Creep Prediction Tool</p>
|
| 383 |
+
<p style='margin-top: 0.5rem; font-size: 14px;'>Developed by <strong>CIFIR</strong> and <strong>AI Research Group KMUTT</strong></p>
|
| 384 |
+
</div>
|
| 385 |
+
""", unsafe_allow_html=True)
|