Spaces:
Sleeping
Sleeping
File size: 4,712 Bytes
80f87f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# π HDD Solution Predictor - Deployment Package
Ready-to-deploy package for the HDD Solution Predictor application.
## π¦ Package Contents
### **Application Files**
- `app.py` - Main Streamlit application (recommended)
- `mobile_app.py` - Mobile-optimized version
- `requirements.txt` - Python dependencies
### **Model Files**
- `decision_tree_model.pkl` - Trained Decision Tree model (100% accuracy)
- `dt_soil_encoder.pkl` - Soil type label encoder
- `dt_water_encoder.pkl` - Water table label encoder
- `dt_solution_encoder.pkl` - Solution label encoder
### **Assets**
- `logo2.e8c5ff97.png` - MEA (Metropolitan Electricity Authority) logo
- `HDD_result.xlsx` - Training dataset
### **Documentation**
- `README.md` - This deployment guide
## π§ Quick Deployment
### **1. Install Dependencies**
```bash
pip install -r requirements.txt
```
### **2. Run Application**
```bash
# Main application (recommended)
streamlit run app.py
# Or mobile version
streamlit run mobile_app.py
```
### **3. Access Application**
- Local: `http://localhost:8501`
- Network: Will be shown in terminal
## π Deployment Options
### **Option A: Local Development**
```bash
git clone <repository>
cd deploy
pip install -r requirements.txt
streamlit run app.py
```
### **Option B: Streamlit Cloud**
1. Upload all files to GitHub repository
2. Connect to Streamlit Cloud
3. Deploy from `deploy/app.py`
### **Option C: Docker Deployment**
Create `Dockerfile`:
```dockerfile
FROM python:3.11-slim
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt
EXPOSE 8501
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0"]
```
### **Option D: Heroku Deployment**
Create `Procfile`:
```
web: streamlit run app.py --server.port=$PORT --server.address=0.0.0.0
```
## π Application Features
### **Core Functionality**
- **Input Parameters**: Pipe diameter, soil type, water table
- **ML Prediction**: Decision Tree with 100% training accuracy
- **Solution Types**: A, B, C, D, E (different protection levels)
### **Technical Specifications**
- **Framework**: Streamlit
- **ML Model**: Scikit-learn Decision Tree
- **Design**: Canva-style responsive UI
- **Branding**: MEA institutional logo
### **Supported Solutions**
- **Solution A**: Enhanced Protection (Sheetpile + Trench + Grouting)
- **Solution B**: Maximum Protection (+ Casing)
- **Solution C**: Moderate Protection (Sheetpile + Trench)
- **Solution D**: Basic Protection (Grouting Only)
- **Solution E**: Minimal Intervention (No Additional Measures)
## π System Requirements
### **Python Version**
- Python 3.8 or higher (recommended: 3.11)
### **Dependencies**
- streamlit
- pandas
- numpy
- scikit-learn
- joblib
- plotly
- openpyxl
- Pillow
### **Resources**
- **RAM**: Minimum 512MB, Recommended 1GB
- **Storage**: ~50MB for all files
- **Network**: Internet connection for initial setup
## π§ Configuration
### **Environment Variables** (Optional)
```bash
export STREAMLIT_SERVER_PORT=8501
export STREAMLIT_SERVER_ADDRESS=0.0.0.0
```
### **Streamlit Config** (Create `.streamlit/config.toml`)
```toml
[server]
port = 8501
address = "0.0.0.0"
[theme]
primaryColor = "#6c5ce7"
backgroundColor = "#ffffff"
secondaryBackgroundColor = "#f0f2f6"
```
## π¨ Troubleshooting
### **Model Loading Issues**
- Ensure all `.pkl` files are in the same directory
- Check Python/scikit-learn version compatibility
### **Logo Not Displaying**
- Verify `logo2.e8c5ff97.png` exists in directory
- App will show MEA text fallback if logo missing
### **Port Already in Use**
```bash
streamlit run app.py --server.port=8502
```
### **Permission Issues**
```bash
chmod +x app.py
pip install --user -r requirements.txt
```
## π± Mobile Access
The application is fully responsive and works on:
- β
Desktop browsers
- β
Mobile phones
- β
Tablets
- β
Touch devices
## π Security Notes
- Application runs locally by default
- No external API calls
- Model predictions processed locally
- Training data included for reference only
## π Support
### **Common Issues**
1. **Dependencies**: Run `pip install -r requirements.txt`
2. **Port conflicts**: Use different port with `--server.port=XXXX`
3. **File paths**: Ensure all files are in same directory
### **Performance**
- **Model loading**: ~1-2 seconds on first run
- **Predictions**: Instant (<100ms)
- **UI rendering**: <1 second
---
## π― Ready to Deploy!
1. **Install requirements**: `pip install -r requirements.txt`
2. **Run application**: `streamlit run app.py`
3. **Open browser**: Navigate to displayed URL
4. **Start predicting**: Enter parameters and get solutions!
**π’ Powered by MEA (Metropolitan Electricity Authority)** |