# source myenv/bin/activate # deactivate import streamlit as st import pandas as pd import numpy as np import torch from torch.utils.data import TensorDataset import matplotlib.pyplot as plt import shap import os import torch.nn as nn import math from pytorch_lightning import LightningModule from PIL import Image from joblib import load # Display logo logo = Image.open('AI_logo.png') st.image(logo, width=100) # Model Components class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=0.1) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) class EQ_encoder(nn.Module): def __init__(self): super(EQ_encoder, self).__init__() self.lstm_layer = nn.LSTM(input_size=1, hidden_size=100, num_layers=10, batch_first=True) self.dense1 = nn.Linear(100, 50) self.dense2 = nn.Linear(50, 16) self.relu = nn.ReLU() def forward(self, x): output, (hidden_last, cell_last) = self.lstm_layer(x) last_output = hidden_last[-1] x = last_output.reshape(x.size(0), -1) x = self.dense1(x) x = torch.relu(x) x = self.dense2(x) x = torch.relu(x) return x class AttentionBlock(nn.Module): def __init__(self, d_model, num_heads, dropout=0.1): super(AttentionBlock, self).__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" self.d_k = d_model // num_heads self.num_heads = num_heads self.w_q = nn.Linear(d_model, d_model) self.w_k = nn.Linear(d_model, d_model) self.w_v = nn.Linear(d_model, d_model) self.w_o = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) def forward(self, query, key, value, mask=None): batch_size = query.size(0) query = self.w_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) key = self.w_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) value = self.w_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) scores = torch.matmul(query, key.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.d_k, dtype=torch.float32)) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) attention_weights = torch.softmax(scores, dim=-1) attention_weights = self.dropout(attention_weights) output = torch.matmul(attention_weights, value) output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k) output = self.w_o(output) return output class FFTAttentionReducer(nn.Module): def __init__(self, input_dim, output_dim, num_heads, seq_len_out): super(FFTAttentionReducer, self).__init__() self.positional_encoding = PositionalEncoding(d_model=64) self.embed_dim = 64 self.heads = num_heads self.head_dim = self.embed_dim // self.heads assert (self.head_dim * self.heads == self.embed_dim), "Embed dim must be divisible by number of heads" self.input_proj = nn.Linear(2, 64) self.q = nn.Linear(self.embed_dim, self.embed_dim) self.k = nn.Linear(self.embed_dim, self.embed_dim) self.v = nn.Linear(self.embed_dim, self.embed_dim) self.fc_out = nn.Linear(self.embed_dim, self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, output_dim) self.pool = nn.AdaptiveAvgPool1d(seq_len_out) self.norm1 = nn.LayerNorm(self.embed_dim) def forward(self, x): x = self.input_proj(x) x = self.positional_encoding(x) batch_size, seq_len, _ = x.shape for _ in range(1): residual = x q = self.q(x).reshape(batch_size, seq_len, self.heads, self.head_dim).permute(0, 2, 1, 3) k = self.k(x).reshape(batch_size, seq_len, self.heads, self.head_dim).permute(0, 2, 1, 3) v = self.v(x).reshape(batch_size, seq_len, self.heads, self.head_dim).permute(0, 2, 1, 3) attention_scores = torch.matmul(q, k.transpose(-2, -1)) / (self.embed_dim ** (1/2)) attention_scores = torch.softmax(attention_scores, dim=-1) out = torch.matmul(attention_scores, v) out = out.transpose(1, 2).contiguous().view(batch_size, seq_len, self.embed_dim) x = self.norm1(out + residual) out = self.fc_out(x) out = self.fc1(out) out = out.transpose(1, 2) out = self.pool(out.contiguous()) out = out.transpose(1, 2) return out class PositionWiseFeedForward(nn.Module): def __init__(self, d_model, d_ff): super(PositionWiseFeedForward, self).__init__() self.fc1 = nn.Linear(d_model, d_ff) self.relu = nn.ReLU() self.tanh = nn.Tanh() self.fc2 = nn.Linear(d_ff, d_model) self.leaky_relu = nn.LeakyReLU(negative_slope=0.01) def forward(self, x): return self.fc2(self.leaky_relu(self.fc1(x))) class encoder(nn.Module): def __init__(self, dim=2): super(encoder, self).__init__() self.input_proj = nn.Linear(2, 64) self.dim = dim self.attention_layer = nn.MultiheadAttention(embed_dim=64, num_heads=4, dropout=0.1) self.norm1 = nn.LayerNorm(64) self.norm2 = nn.LayerNorm(64) self.dense1 = nn.Linear(40, 16) self.dense2 = nn.Linear(16, 2) self.softmax = nn.Softmax(dim=1) self.model_eq = EQ_encoder() self.positional_encoding = PositionalEncoding(d_model=64) self.feed_forward = PositionWiseFeedForward(d_model=64, d_ff=20) self.atten = AttentionBlock(d_model=64, num_heads=4, dropout=0.1) self.relu = nn.ReLU() self.tanh = nn.Tanh() self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.input_proj(x) x = self.positional_encoding(x) for _ in range(1): residual = x x = self.atten(x, x, x) x = self.norm1(x) x = self.feed_forward(x) x = self.norm2(x) x = x + residual return x class encoder_LSTM(nn.Module): def __init__(self): super(encoder_LSTM, self).__init__() self.lstm_layer = nn.LSTM(input_size=4, hidden_size=20, num_layers=5, batch_first=True) self.dense1 = nn.Linear(100, 50) self.dense2 = nn.Linear(50, 16) self.softmax = nn.Softmax(dim=1) def forward(self, x): output, (hidden_last, cell_last) = self.lstm_layer(x) last_output = hidden_last[-1] x = last_output.reshape(x.size(0), -1) x = self.dense1(x) x = torch.sigmoid(x) x = self.dense2(x) return x class com_model(LightningModule): def __init__(self): super(com_model, self).__init__() self.best_val_loss = float('inf') self.best_val_acc = 0 self.train_loss_history = [] self.train_loss_accuracy = [] self.train_accuracy_history = [] self.val_loss_history = [] self.val_accuracy_history = [] self.model_eq = EQ_encoder() self.encoder = encoder(dim=6) self.flatten = nn.Flatten() self.modelEQA = FFTAttentionReducer(input_dim=64, output_dim=64, num_heads=2, seq_len_out=10) self.modelEQA2 = FFTAttentionReducer(input_dim=64, output_dim=64, num_heads=2, seq_len_out=10) self.cross_attention_layer = nn.MultiheadAttention(embed_dim=64, num_heads=8) self.encoder_LSTM = encoder_LSTM() self.dense2 = nn.Linear(2*640, 100) self.dense3 = nn.Linear(100, 30) self.dense4 = nn.Linear(34, 2) self.relu = nn.ReLU() self.dropout = torch.nn.Dropout(0.4) self.leaky_relu = nn.LeakyReLU(negative_slope=0.01) self.softmax = nn.Softmax(dim=1) def forward(self, x1, x2, x3): int1_x = self.encoder(x1) int2_x = self.modelEQA(x2) concatenated_tensor = torch.cat((int1_x, int2_x), dim=2) x = concatenated_tensor.view(-1, 2*640) x = self.dense2(x) x = self.dropout(x) x = self.dense3(x) x = self.leaky_relu(x) x = torch.cat((x, x3), dim=1) x = self.dense4(x) x = self.leaky_relu(x) out_y = self.softmax(x) return out_y def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=1e-4, weight_decay=1e-3) return optimizer def create_waterfall_plot(shap_values, n_features, output_index, X, model, base_values, raw_data, sample_name, lique_y, test_data, df_spt=None, df_soil_type=None): """Create a waterfall plot for SHAP values""" model.eval() with torch.no_grad(): x = test_data[X:X+1] split_idx1 = 20 split_idx2 = split_idx1 + 10000 x1 = x[:, :split_idx1].view(-1, 2, 10).permute(0, 2, 1) x2 = x[:, split_idx1:split_idx2].view(-1, 2, 5000).permute(0, 2, 1) x3 = x[:, split_idx2:] predictions = model(x1, x2, x3) # Get the liquefaction probability (1 - no_liquefaction_prob) model_prob = predictions[0, output_index].item() base_value = base_values[output_index] sample_shap = shap_values[X, :, output_index].copy() # Make a copy to avoid modifying original # Scale SHAP values to match model prediction shap_sum = sample_shap.sum() target_sum = model_prob - base_value if shap_sum != 0: # Avoid division by zero scaling_factor = target_sum / shap_sum sample_shap = sample_shap * scaling_factor verification_results = { 'base_value': base_value, 'model_prediction': model_prob, 'shap_sum': sample_shap.sum(), 'final_probability': base_value + sample_shap.sum(), 'prediction_difference': abs(model_prob - (base_value + sample_shap.sum())) } # Process features feature_names = [] feature_values = [] shap_values_list = [] # Process SPT and Soil features (first 20) for idx in range(20): if idx < 10: name = f'SPT_{idx+1}' val = df_spt.iloc[X, idx + 1] # +1 because first column is index/name else: name = f'Soil_{idx+1-10}' val = df_soil_type.iloc[X, idx - 9] # -9 to get correct soil type column feature_names.append(name) feature_values.append(float(val)) shap_values_list.append(float(sample_shap[idx])) # Add combined EQ feature eq_sum = float(np.sum(sample_shap[20:5020])) if abs(eq_sum) > 0: feature_names.append('EQ') feature_values.append(0) # EQ feature is already normalized shap_values_list.append(eq_sum) # Add combined Depth feature depth_sum = float(np.sum(sample_shap[5020:10020])) if abs(depth_sum) > 0: feature_names.append('Depth') feature_values.append(df_spt.iloc[X, 17]) shap_values_list.append(depth_sum) # Add site features feature_names.extend(['WT']) feature_values.append(df_spt.iloc[X, 11]) shap_values_list.append(sample_shap[10020]) feature_names.extend(['Dist_epi']) feature_values.append(df_spt.iloc[X, 12]) shap_values_list.append(sample_shap[10021]) feature_names.extend(['Dist_Water']) feature_values.append(df_spt.iloc[X, 18]) shap_values_list.append(sample_shap[10022]) feature_names.extend(['Vs30']) feature_values.append(df_spt.iloc[X, 19]) shap_values_list.append(sample_shap[10023]) # Convert to numpy arrays for consistent handling abs_values = np.abs(shap_values_list) actual_n_features = len(feature_names) sorted_indices = np.argsort(abs_values) top_indices = sorted_indices[-actual_n_features:].tolist() # Create final arrays final_names = [] final_values = [] final_shap = [] for i in reversed(top_indices): if 0 <= i < len(feature_names): final_names.append(feature_names[i]) final_values.append(feature_values[i]) final_shap.append(shap_values_list[i]) # Create SHAP explanation explainer = shap.Explanation( values=np.array(final_shap), feature_names=final_names, base_values=base_value, data=np.array(final_values) ) # Create plot plt.clf() plt.close('all') fig = plt.figure(figsize=(12, 16)) shap.plots.waterfall(explainer, max_display=len(final_names), show=False) plt.title( f'Sample {X+1}, {sample_name[X][0]} ({lique_y[X][0]})', fontsize=16, pad=20, fontweight='bold' ) # Save plot os.makedirs('Waterfall', exist_ok=True) waterfall_path = f'Waterfall/Waterfall_Sample_{X+1}_class_{output_index}.png' fig.savefig(waterfall_path, dpi=300, bbox_inches='tight') plt.close() return waterfall_path, verification_results @st.cache_resource def load_model(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = com_model() model.load_state_dict(torch.load('R4V6.3_Model.pth', map_location=device)) model = model.to(device) model.eval() return model def preprocess_fft_eq(data): """Apply FFT preprocessing to earthquake data""" # Ensure data is float32 data = data.astype(np.float32) # Reshape to 2D if needed (samples, time_steps) orig_shape = data.shape if len(orig_shape) == 3: data = data.reshape(orig_shape[0], orig_shape[1]) # Convert to torch tensor data = torch.from_numpy(data).float() # Apply FFT fft_result = torch.fft.fft(data, dim=1) # Get magnitude spectrum magnitude = torch.abs(fft_result) # Normalize magnitude = magnitude / 150 # Convert back to numpy and reshape to original dimensions magnitude = magnitude.numpy() if len(orig_shape) == 3: magnitude = magnitude.reshape(orig_shape) return magnitude def preprocess_data(df_spt, df_soil_type, df_EQ_data): # Initialize scalers scalers = load('fitted_scalers/all_scalers.joblib') scaler1 = scalers['scaler1'] scaler2 = scalers['scaler2'] scaler3 = scalers['scaler3'] scaler6 = scalers['scaler6'] # Convert dataframes to numpy arrays spt = np.array(df_spt) soil_type = np.array(df_soil_type) EQ_dta = np.array(df_EQ_data) # Process SPT data data_spt = scaler1.transform(spt[:, 1:11]) data_soil_type = soil_type[:, 1:11]/2 # normalize # Process feature data feature_n = spt[:, 11:13] feature = scaler2.transform(feature_n) # Process water and vs30 data dis_water = spt[:, 18:19] vs_30 = spt[:, 19:20] dis_water = scaler3.transform(dis_water) vs_30r = scaler6.transform(vs_30) # Process EQ data EQ_data = EQ_dta[:, 1:5001] EQ_depth_S = spt[:, 17:18]/30 # Reshape EQ data EQ_data = EQ_data.astype(np.float32) EQ_data = np.reshape(EQ_data, (-1, EQ_data.shape[1], 1)) EQ_data_fft = preprocess_fft_eq(EQ_data) # Create EQ feature EQ_feature = np.zeros((EQ_data_fft.shape[0], EQ_data_fft.shape[1], 2)) EQ_feature[:,:,0:1] = EQ_data_fft for i in range(0, (EQ_data.shape[0])): EQ_feature[i,:,1] = EQ_depth_S[i,0] # Create soil data soil_data = np.stack([data_spt, data_soil_type], axis=2) X_train_CNN = np.zeros((soil_data.shape[0], soil_data.shape[1], feature.shape[1])) X_train_CNN[:,:,0:2] = soil_data # Create feature_sta feature_sta = np.concatenate((feature, dis_water, vs_30r), axis=1) return X_train_CNN, EQ_feature, feature_sta def main(): st.title("Liquefaction Probability Calculator V 1.0") # Initialize session state if 'processed' not in st.session_state: st.session_state.processed = False # Add example file download with open('input.xlsx', 'rb') as file: st.download_button( label="Download Example Input File", data=file, file_name="example_input.xlsx", mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" ) # File upload uploaded_file = st.file_uploader("Upload Excel file", type=['xlsx']) if uploaded_file is not None: try: if not st.session_state.processed: # Read the Excel file df_spt = pd.read_excel(uploaded_file, sheet_name='SPT') df_soil_type = pd.read_excel(uploaded_file, sheet_name='soil_type') df_EQ_data = pd.read_excel(uploaded_file, sheet_name='EQ_data') st.success("File uploaded successfully!") # Add calculate button if st.button("Calculate Liquefaction Probability"): with st.spinner("Processing data and calculating probabilities..."): # Preprocess data X_train_CNN, EQ_feature, feature_sta = preprocess_data(df_spt, df_soil_type, df_EQ_data) # Load model model = load_model() # Convert to tensors X_train_CNN = torch.FloatTensor(X_train_CNN) EQ_feature = torch.FloatTensor(EQ_feature) feature_sta = torch.FloatTensor(feature_sta) # Make prediction with torch.no_grad(): predictions = model(X_train_CNN, EQ_feature, feature_sta) # Display results st.subheader("Prediction Results") # Create a DataFrame for results liquefaction_probs = [pred[1].item() for pred in predictions] results_df = pd.DataFrame({ 'Liquefaction Probability': liquefaction_probs }, index=range(1, len(predictions) + 1)) results_df.index.name = 'Sample' # Display results in a table st.dataframe( results_df.style.format({ 'Liquefaction Probability': '{:.4f}' }), use_container_width=True ) # Create and display SHAP waterfall plots st.subheader("SHAP Analysis") # Load pre-computed SHAP values loaded_shap_values = np.load('V10.1_shap_values.npy') for i in range(len(predictions)): with st.expander(f"Sample {i+1}"): # Create waterfall plot waterfall_path, _ = create_waterfall_plot( shap_values=loaded_shap_values, n_features=25, output_index=1, X=i, model=model, base_values=[0.4510177, 0.5489824], raw_data=torch.cat([ X_train_CNN.reshape(len(X_train_CNN), 10, 2).transpose(-1, 1).reshape(len(X_train_CNN), -1), EQ_feature.reshape(len(EQ_feature), 5000, 2).transpose(-1, 1).reshape(len(EQ_feature), -1), feature_sta ], dim=1), sample_name=df_spt.iloc[:, :1].values, lique_y=df_spt.iloc[:, 16:17].values, test_data=torch.cat([ X_train_CNN.reshape(len(X_train_CNN), 10, 2).transpose(-1, 1).reshape(len(X_train_CNN), -1), EQ_feature.reshape(len(EQ_feature), 5000, 2).transpose(-1, 1).reshape(len(EQ_feature), -1), feature_sta ], dim=1), df_spt=df_spt, df_soil_type=df_soil_type ) if os.path.exists(waterfall_path): st.image(waterfall_path) st.session_state.processed = True except Exception as e: st.error(f"An error occurred: {str(e)}") else: st.session_state.processed = False if __name__ == "__main__": main()