File size: 37,013 Bytes
a5c2995 1843b43 a5c2995 b50196d a5c2995 1843b43 a5c2995 1843b43 a5c2995 1843b43 a5c2995 1843b43 a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 1843b43 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 1843b43 a5c2995 1843b43 a5c2995 1843b43 a5c2995 1843b43 a5c2995 1843b43 a5c2995 1843b43 a5c2995 b50196d a5c2995 b50196d a5c2995 1843b43 a5c2995 1843b43 a5c2995 1843b43 a5c2995 1843b43 a5c2995 1843b43 a5c2995 1843b43 a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 b50196d a5c2995 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 |
"""
Multilayer Prefabricated Vertical Drain (PVD) Consolidation Analysis
Calculates settlement vs time using finite difference method
"""
import numpy as np
import matplotlib.pyplot as plt
import yaml
import argparse
import os
from dataclasses import dataclass
from typing import List, Tuple, Dict, Any
@dataclass
class LoadingStage:
"""Loading stage definition for staged loading"""
start_time: float # Time when this stage starts (years)
surcharge: float # Surcharge load (kPa)
vacuum: float # Vacuum pressure (kPa, positive value, will be applied as negative)
def __post_init__(self):
"""Validate inputs"""
if self.vacuum < 0:
raise ValueError(
"Vacuum should be specified as positive value (e.g., 80 for -80 kPa)"
)
@dataclass
class SoilLayer:
"""Soil layer properties"""
thickness: float # Layer thickness (m)
Cv: float # Vertical coefficient of consolidation (m²/year)
Ch: float # Horizontal coefficient of consolidation (m²/year)
RR: float # Recompression ratio
CR: float # Compression ratio
sigma_ini: float # Initial effective stress (kPa)
sigma_p: float # Preconsolidation pressure (kPa)
kh: float # Horizontal permeability (m/year)
ks: float # Smear zone permeability (m/year)
@dataclass
class PVDProperties:
"""PVD installation properties"""
dw: float # Equivalent diameter of drain (m)
ds: float # Smear zone diameter (m)
De: float # Equivalent diameter of unit cell (m)
L_drain: float # Total drain spacing for two-way drainage (m)
qw: float # Well discharge capacity (m³/year)
r_influence: float = None # Vacuum influence radius (m), default = De/4
vacuum_depth_loss: bool = True # Use vacuum loss with depth (default: True)
def __post_init__(self):
"""Set default vacuum influence radius"""
if self.r_influence is None:
self.r_influence = self.De / 4
class PVDConsolidation:
"""
Multilayer PVD consolidation analysis using finite difference method
"""
def __init__(
self,
soil_layers: List[SoilLayer],
pvd: PVDProperties,
surcharge: float = 0.0,
vacuum: float = 0.0,
loading_stages: List[LoadingStage] = None,
dt: float = 0.01,
):
"""
Initialize PVD consolidation analysis
Parameters:
-----------
soil_layers : List[SoilLayer]
List of soil layers from top to bottom
pvd : PVDProperties
PVD installation properties
surcharge : float
Applied surcharge load (kPa) - for single-stage loading
vacuum : float
Applied vacuum pressure (kPa, positive value) - for single-stage loading
loading_stages : List[LoadingStage]
List of loading stages for multi-stage loading (overrides surcharge/vacuum)
dt : float
Time step for finite difference (years)
"""
self.layers = soil_layers
self.pvd = pvd
self.dt = dt
# Setup loading
if loading_stages is not None:
self.loading_stages = sorted(loading_stages, key=lambda x: x.start_time)
self.use_staged_loading = True
else:
# Single stage loading
self.loading_stages = [
LoadingStage(start_time=0.0, surcharge=surcharge, vacuum=vacuum)
]
self.use_staged_loading = False
# For compatibility
self.surcharge = surcharge
self.vacuum = vacuum
# Calculate total thickness
self.total_thickness = sum(layer.thickness for layer in soil_layers)
# Initialize mesh
self._setup_mesh()
def _setup_mesh(self, nodes_per_meter: int = 10):
"""Setup finite difference mesh"""
self.nodes_per_meter = nodes_per_meter
# Create mesh for each layer
self.z_coords = []
self.layer_indices = []
self.Cv_profile = []
self.Ch_profile = []
self.kh_profile = []
self.ks_profile = []
z = 0
for i, layer in enumerate(self.layers):
n_nodes = max(int(layer.thickness * nodes_per_meter), 2)
z_layer = np.linspace(z, z + layer.thickness, n_nodes, endpoint=False)
self.z_coords.extend(z_layer)
self.layer_indices.extend([i] * len(z_layer))
self.Cv_profile.extend([layer.Cv] * len(z_layer))
self.Ch_profile.extend([layer.Ch] * len(z_layer))
self.kh_profile.extend([layer.kh] * len(z_layer))
self.ks_profile.extend([layer.ks] * len(z_layer))
z += layer.thickness
# Add final node
self.z_coords.append(self.total_thickness)
self.layer_indices.append(len(self.layers) - 1)
self.Cv_profile.append(self.layers[-1].Cv)
self.Ch_profile.append(self.layers[-1].Ch)
self.kh_profile.append(self.layers[-1].kh)
self.ks_profile.append(self.layers[-1].ks)
self.z_coords = np.array(self.z_coords)
self.layer_indices = np.array(self.layer_indices)
self.Cv_profile = np.array(self.Cv_profile)
self.Ch_profile = np.array(self.Ch_profile)
self.kh_profile = np.array(self.kh_profile)
self.ks_profile = np.array(self.ks_profile)
self.n_nodes = len(self.z_coords)
self.dz = np.diff(self.z_coords)
def get_current_loading(self, t: float) -> Tuple[float, float]:
"""
Get current surcharge and vacuum at time t
Parameters:
-----------
t : float
Current time (years)
Returns:
--------
surcharge, vacuum : float, float
Current surcharge and vacuum values (kPa)
"""
# Find the active loading stage
active_stage = self.loading_stages[0]
for stage in self.loading_stages:
if t >= stage.start_time:
active_stage = stage
else:
break
return active_stage.surcharge, active_stage.vacuum
def calculate_vacuum_at_radius(self, r: float, vacuum_magnitude: float) -> float:
"""
Calculate vacuum pressure at radial distance r from drain
u(r) = u_drain × exp(-r/r_influence)
Parameters:
-----------
r : float
Radial distance from drain (m)
vacuum_magnitude : float
Vacuum at drain (kPa, positive value)
Returns:
--------
vacuum_at_r : float
Vacuum pressure at distance r (kPa, positive value)
"""
if vacuum_magnitude == 0:
return 0.0
# Vacuum decreases exponentially with distance
vacuum_at_r = vacuum_magnitude * np.exp(-r / self.pvd.r_influence)
return vacuum_at_r
def calculate_layer_average_vacuum(
self, layer_idx: int, vacuum_surface: float
) -> float:
"""
Calculate average vacuum pressure for a specific soil layer
If vacuum_depth_loss = True:
Vacuum is full at surface and decreases with depth
u(z) = u_surface × exp(-z/L_drain)
If vacuum_depth_loss = False:
Uniform vacuum throughout (full vacuum at all depths within L_drain)
Parameters:
-----------
layer_idx : int
Layer index
vacuum_surface : float
Vacuum at surface (kPa, positive value)
Returns:
--------
avg_vacuum : float
Average vacuum for this layer (kPa)
"""
if vacuum_surface == 0:
return 0.0
layer = self.layers[layer_idx]
# Find layer depth range
depth_top = sum(self.layers[i].thickness for i in range(layer_idx))
depth_bottom = depth_top + layer.thickness
# Check if layer is within drain length
if depth_top >= self.pvd.L_drain:
# Layer is completely below drain length - no vacuum effect
return 0.0
# Option 1: Uniform vacuum (no depth loss)
if not self.pvd.vacuum_depth_loss:
# Full vacuum throughout the layer (within drain length)
return vacuum_surface
# Option 2: Vacuum loss with depth
# Adjust bottom depth if it exceeds drain length
if depth_bottom > self.pvd.L_drain:
depth_bottom = self.pvd.L_drain
effective_thickness = depth_bottom - depth_top
else:
effective_thickness = layer.thickness
# Integrate vacuum over layer thickness
# u(z) = u_surface × exp(-z/L_drain)
# Average = (1/h) ∫[z_top to z_bottom] u_surface × exp(-z/L_drain) dz
L = self.pvd.L_drain
# Analytical integration:
# ∫ u_surface × exp(-z/L) dz = -u_surface × L × exp(-z/L) + C
integral_bottom = -vacuum_surface * L * np.exp(-depth_bottom / L)
integral_top = -vacuum_surface * L * np.exp(-depth_top / L)
integral = integral_bottom - integral_top
# Average over effective layer thickness
avg_vacuum = integral / effective_thickness
return avg_vacuum
def calculate_pvd_factors_layer(self, layer_idx: int) -> Tuple[float, float, float]:
"""
Calculate PVD influence factors for a specific layer
Parameters:
-----------
layer_idx : int
Layer index
Returns:
--------
Fn, Fs, Fr : float
Geometric, smear, and well resistance factors for the layer
"""
layer = self.layers[layer_idx]
# Geometric factor (n ratio) - same for all layers
n = self.pvd.De / self.pvd.dw
Fn = (n**2 / (n**2 - 1)) * np.log(n) - 3 / 4 + 1 / n**2
# Fs - Smear effect factor (layer-specific)
s = self.pvd.ds / self.pvd.dw
Fs = ((layer.kh / layer.ks) - 1) * np.log(s)
# Fr - Well resistance factor (layer-specific)
L = self.pvd.L_drain
if self.pvd.qw > 1e10: # If qw is very large, assume negligible well resistance
Fr = 0.0
else:
Fr = (np.pi * L**2 * layer.kh) / (8 * self.pvd.qw)
return Fn, Fs, Fr
def calculate_pvd_factors(self) -> Tuple[float, float, float]:
"""
Calculate PVD influence factors using weighted average permeabilities
Returns:
--------
Fn, Fs, Fr : float
Geometric, smear, and well resistance factors
"""
# Use thickness-weighted average kh and ks
kh_avg = np.average(self.kh_profile, weights=np.ones(len(self.kh_profile)))
ks_avg = np.average(self.ks_profile, weights=np.ones(len(self.ks_profile)))
# Geometric factor (n ratio)
n = self.pvd.De / self.pvd.dw
# Fn - Geometric factor
Fn = (n**2 / (n**2 - 1)) * np.log(n) - 3 / 4 + 1 / n**2
# Fs - Smear effect factor
s = self.pvd.ds / self.pvd.dw
Fs = ((kh_avg / ks_avg) - 1) * np.log(s)
# Fr - Well resistance factor
# For typical band drains: Fr = π(2L-l)l/(qw·kh) where l = L/2
# Simplified for two-way drainage
L = self.pvd.L_drain
if self.pvd.qw > 1e10: # If qw is very large, assume negligible well resistance
Fr = 0.0
else:
# Using Hansbo formula: Fr = (L²/(8·qw))·(kh)
# More typical: Fr = π·L²·kh/(8·qw) for two-way drainage
Fr = (np.pi * L**2 * kh_avg) / (8 * self.pvd.qw)
return Fn, Fs, Fr
def calculate_Uh(self, t: float) -> np.ndarray:
"""
Calculate degree of consolidation in horizontal direction
using finite difference method with layer-specific PVD factors
Only applies to layers within drain length L
Parameters:
-----------
t : float
Time (years)
Returns:
--------
Uh : ndarray
Degree of horizontal consolidation at each node
(0 for nodes beyond drain length)
"""
# Pre-calculate F_total for each layer
F_total_layers = []
for layer_idx in range(len(self.layers)):
Fn, Fs, Fr = self.calculate_pvd_factors_layer(layer_idx)
F_total_layers.append(Fn + Fs + Fr)
# Initialize excess pore pressure (normalized)
u = np.ones(self.n_nodes) # Initially all excess pore pressure = surcharge
u_history = [u.copy()]
# Time stepping
n_steps = int(t / self.dt)
for step in range(n_steps):
u_new = u.copy()
# Finite difference for radial consolidation
# ∂u/∂t = Ch * [∂²u/∂r² + (1/r)(∂u/∂r)]
# Simplified for radial drainage with PVD
for i in range(1, self.n_nodes - 1):
# Check if this node is within drain length
depth = self.z_coords[i]
if depth <= self.pvd.L_drain:
# Within drain length - apply horizontal consolidation
Ch = self.Ch_profile[i]
layer_idx = self.layer_indices[i]
F_total = F_total_layers[layer_idx]
# Radial drainage term (simplified)
# Using equivalent time factor approach
Th = Ch * self.dt / (self.pvd.De**2 / 4)
# Update excess pore pressure
decay_rate = 8 * Th / F_total
u_new[i] = u[i] * np.exp(-decay_rate)
else:
# Beyond drain length - no horizontal consolidation
# u remains unchanged (Uh = 0)
pass
# Boundary conditions
u_new[0] = 0 # Top drainage
u_new[-1] = 0 # Bottom drainage (if two-way)
u = u_new
if step % max(1, n_steps // 100) == 0:
u_history.append(u.copy())
# Calculate Uh (degree of consolidation)
Uh = 1 - u
return Uh
def calculate_Uv(self, t: float) -> np.ndarray:
"""
Calculate degree of consolidation in vertical direction
For layers below PVD: drainage path is from layer midpoint to bottom of PVD
For layers within/above PVD: normal two-way drainage
Parameters:
-----------
t : float
Time (years)
Returns:
--------
Uv : ndarray
Degree of vertical consolidation at each node
"""
Uv = np.zeros(self.n_nodes)
for i in range(self.n_nodes):
depth = self.z_coords[i]
Cv = self.Cv_profile[i]
layer_idx = self.layer_indices[i]
# Determine drainage path length H
if depth > self.pvd.L_drain:
# Below PVD: drainage from this point UP to bottom of PVD
# For layer below PVD, use distance from layer midpoint to PVD bottom
# Find layer boundaries
cumulative_depth = 0
for idx in range(layer_idx):
cumulative_depth += self.layers[idx].thickness
layer_top = cumulative_depth
layer_bottom = cumulative_depth + self.layers[layer_idx].thickness
layer_midpoint = (layer_top + layer_bottom) / 2
# Drainage path: from layer midpoint to PVD bottom
H = abs(layer_midpoint - self.pvd.L_drain)
# One-way drainage (upward only to PVD)
drainage_type = "one-way"
else:
# Within or above PVD: normal two-way drainage
H = self.total_thickness
drainage_type = "two-way"
# Time factor
if H > 0:
Tv = Cv * t / H**2
else:
Tv = 1e10 # Very large, instant drainage
# Calculate Uv using Terzaghi's solution
if drainage_type == "one-way":
# One-way drainage (for layers below PVD)
if Tv < 0.05:
Uv[i] = np.sqrt(4 * Tv / np.pi)
else:
Uv[i] = 1 - (8 / np.pi**2) * np.exp(-(np.pi**2) * Tv / 4)
else:
# Two-way drainage (for layers within PVD zone)
if Tv < 0.217:
Uv[i] = np.sqrt(4 * Tv / np.pi)
else:
Uv[i] = 1 - (8 / np.pi**2) * np.exp(-(np.pi**2) * Tv / 4)
Uv[i] = min(Uv[i], 1.0)
return Uv
def calculate_total_U(self, t: float) -> np.ndarray:
"""
Calculate total degree of consolidation (combined vertical and horizontal)
For nodes within drain length: U = 1 - (1 - Uh)(1 - Uv)
For nodes beyond drain length: U = Uv (only vertical consolidation)
Parameters:
-----------
t : float
Time (years)
Returns:
--------
U : ndarray
Total degree of consolidation at each node
"""
Uh = self.calculate_Uh(t)
Uv = self.calculate_Uv(t)
U = np.zeros(self.n_nodes)
for i in range(self.n_nodes):
depth = self.z_coords[i]
if depth <= self.pvd.L_drain:
# Within drain length - combined vertical and horizontal
U[i] = 1 - (1 - Uh[i]) * (1 - Uv[i])
else:
# Beyond drain length - only vertical consolidation
U[i] = Uv[i]
return U
def calculate_settlement(self, t: float) -> Tuple[float, np.ndarray]:
"""
Calculate total settlement at time t
For staged loading: calculates settlement contribution from each stage
Parameters:
-----------
t : float
Time (years)
Returns:
--------
total_settlement : float
Total settlement (m)
layer_settlements : ndarray
Settlement for each layer (m)
"""
layer_settlements = np.zeros(len(self.layers))
# For each loading stage, calculate its contribution to settlement
for stage_idx, stage in enumerate(self.loading_stages):
if t < stage.start_time:
# This stage hasn't started yet
continue
# Time since this stage started
t_stage = t - stage.start_time
# Calculate consolidation degree for this stage's time duration
U_stage = self.calculate_total_U(t_stage)
# Calculate settlement for each layer from this load increment
for i, layer in enumerate(self.layers):
# Find nodes in this layer
layer_mask = self.layer_indices == i
U_layer = np.mean(U_stage[layer_mask])
# Get layer-specific vacuum (decreases with depth)
# Previous stage vacuum for this layer
if stage_idx == 0:
avg_vacuum_prev_layer = 0.0
else:
prev_stage = self.loading_stages[stage_idx - 1]
avg_vacuum_prev_layer = self.calculate_layer_average_vacuum(
i, prev_stage.vacuum
)
# Current stage vacuum for this layer
avg_vacuum_current_layer = self.calculate_layer_average_vacuum(
i, stage.vacuum
)
# Previous stage load for this layer
if stage_idx == 0:
prev_surcharge = 0.0
sigma_prev_layer = 0.0
else:
prev_surcharge = self.loading_stages[stage_idx - 1].surcharge
sigma_prev_layer = prev_surcharge + avg_vacuum_prev_layer
# Current stage load for this layer
sigma_current_layer = stage.surcharge + avg_vacuum_current_layer
# Load increment for this layer
delta_sigma_layer = sigma_current_layer - sigma_prev_layer
if abs(delta_sigma_layer) < 1e-6:
# No significant load change in this layer
continue
# Stress before this stage
sigma_before = layer.sigma_ini + sigma_prev_layer
# Stress after this stage (if fully consolidated)
sigma_after = layer.sigma_ini + sigma_current_layer
# Calculate ultimate settlement for this load increment
Sc_increment = 0.0
if delta_sigma_layer > 0:
# Loading increment
if sigma_after <= layer.sigma_p:
# All in recompression range
Sc_increment = (
layer.RR
* np.log10(sigma_after / sigma_before)
* layer.thickness
)
elif sigma_before >= layer.sigma_p:
# All in virgin compression range
Sc_increment = (
layer.CR
* np.log10(sigma_after / sigma_before)
* layer.thickness
)
else:
# Crosses from recompression to virgin compression
Sc_recomp = (
layer.RR
* np.log10(layer.sigma_p / sigma_before)
* layer.thickness
)
Sc_virgin = (
layer.CR
* np.log10(sigma_after / layer.sigma_p)
* layer.thickness
)
Sc_increment = Sc_recomp + Sc_virgin
else:
# Unloading (e.g., vacuum removal) - use recompression/swelling
Sc_increment = (
layer.RR
* np.log10(sigma_after / sigma_before)
* layer.thickness
)
# Add this stage's contribution (with consolidation degree)
layer_settlements[i] += U_layer * Sc_increment
total_settlement = np.sum(layer_settlements)
return total_settlement, layer_settlements
def settlement_vs_time(
self, t_max: float, n_points: int = 100
) -> Tuple[np.ndarray, np.ndarray]:
"""
Calculate settlement vs time curve
Parameters:
-----------
t_max : float
Maximum time (years)
n_points : int
Number of time points
Returns:
--------
time : ndarray
Time array (years)
settlement : ndarray
Settlement array (m)
"""
time = np.linspace(0, t_max, n_points)
settlement = np.zeros(n_points)
for i, t in enumerate(time):
if t == 0:
settlement[i] = 0
else:
settlement[i], _ = self.calculate_settlement(t)
return time, settlement
def plot_settlement_vs_time(
self, t_max: float, n_points: int = 100, save_path: str = None
):
"""
Plot settlement vs time curve
Parameters:
-----------
t_max : float
Maximum time (years)
n_points : int
Number of time points
save_path : str, optional
Path to save the plot
"""
time, settlement = self.settlement_vs_time(t_max, n_points)
# Convert to mm
settlement_mm = settlement * 1000
plt.figure(figsize=(10, 6))
plt.plot(time, settlement_mm, "b-", linewidth=2)
plt.xlabel("Time (years)", fontsize=12)
plt.ylabel("Settlement (mm)", fontsize=12)
plt.title(
"Settlement vs Time - PVD Consolidation", fontsize=14, fontweight="bold"
)
plt.grid(True, alpha=0.3)
plt.tight_layout()
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches="tight")
plt.show()
return time, settlement_mm
def plot_degree_of_consolidation(self, t: float, save_path: str = None):
"""
Plot degree of consolidation profile at time t
Parameters:
-----------
t : float
Time (years)
save_path : str, optional
Path to save the plot
"""
Uh = self.calculate_Uh(t)
Uv = self.calculate_Uv(t)
U = self.calculate_total_U(t)
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
# Plot 1: Degree of consolidation profiles
ax1.plot(Uh * 100, self.z_coords, "r-", linewidth=2, label="Horizontal (Uh)")
ax1.plot(Uv * 100, self.z_coords, "b-", linewidth=2, label="Vertical (Uv)")
ax1.plot(U * 100, self.z_coords, "g-", linewidth=2, label="Total (U)")
# Add drain length line
ax1.axhline(
y=self.pvd.L_drain,
color="orange",
linestyle="--",
linewidth=1.5,
alpha=0.7,
label=f"Drain Length = {self.pvd.L_drain:.1f} m",
)
ax1.set_xlabel("Degree of Consolidation (%)", fontsize=12)
ax1.set_ylabel("Depth (m)", fontsize=12)
ax1.set_title(
f"Consolidation Profile at t = {t:.2f} years",
fontsize=12,
fontweight="bold",
)
ax1.invert_yaxis()
ax1.grid(True, alpha=0.3)
ax1.legend()
# Plot 2: Excess pore pressure
u = 1 - U
ax2.plot(u * self.surcharge, self.z_coords, "k-", linewidth=2)
ax2.set_xlabel("Excess Pore Pressure (kPa)", fontsize=12)
ax2.set_ylabel("Depth (m)", fontsize=12)
ax2.set_title(
f"Excess Pore Pressure at t = {t:.2f} years", fontsize=12, fontweight="bold"
)
ax2.invert_yaxis()
ax2.grid(True, alpha=0.3)
plt.tight_layout()
if save_path:
plt.savefig(save_path, dpi=300, bbox_inches="tight")
plt.show()
def get_summary_report(self, t_check: List[float]) -> str:
"""
Generate summary report for specified time points
Parameters:
-----------
t_check : List[float]
Time points to check (years)
Returns:
--------
report : str
Summary report
"""
Fn, Fs, Fr = self.calculate_pvd_factors()
report = "=" * 70 + "\n"
report += "PVD CONSOLIDATION ANALYSIS SUMMARY\n"
report += "=" * 70 + "\n\n"
report += "PVD PARAMETERS:\n"
report += f" Equivalent drain diameter (dw): {self.pvd.dw:.3f} m\n"
report += f" Smear zone diameter (ds): {self.pvd.ds:.3f} m\n"
report += f" Unit cell diameter (De): {self.pvd.De:.3f} m\n"
report += f" Drain length (L): {self.pvd.L_drain:.2f} m\n"
report += (
f" Drain spacing ratio (n = De/dw): {self.pvd.De / self.pvd.dw:.2f}\n"
)
report += f" Geometric factor (Fn): {Fn:.4f}\n"
report += f" Smear factor (Fs - avg): {Fs:.4f}\n"
report += f" Well resistance (Fr - avg): {Fr:.4f}\n"
report += f" Total resistance (F - avg): {Fn + Fs + Fr:.4f}\n\n"
report += "SOIL PROFILE:\n"
cumulative_depth = 0
for i, layer in enumerate(self.layers):
depth_top = cumulative_depth
depth_bottom = cumulative_depth + layer.thickness
# Check if layer is within drain length
if depth_bottom <= self.pvd.L_drain:
drain_status = "Full PVD effect (Uh + Uv)"
elif depth_top >= self.pvd.L_drain:
drain_status = "No PVD effect (Uv only)"
else:
drain_status = "Partial PVD effect"
report += f" Layer {i + 1} ({depth_top:.1f}m - {depth_bottom:.1f}m): {drain_status}\n"
report += f" Thickness: {layer.thickness:.2f} m\n"
report += f" Ch: {layer.Ch:.4f} m²/year\n"
report += f" Cv: {layer.Cv:.4f} m²/year\n"
report += f" kh: {layer.kh:.4f} m/year\n"
report += f" ks: {layer.ks:.4f} m/year\n"
report += f" RR: {layer.RR:.4f}\n"
report += f" CR: {layer.CR:.4f}\n"
report += f" σ'ini: {layer.sigma_ini:.1f} kPa\n"
report += f" σ'p: {layer.sigma_p:.1f} kPa\n\n"
cumulative_depth = depth_bottom
report += f"Applied surcharge: {self.surcharge:.1f} kPa\n\n"
report += "=" * 70 + "\n"
report += "SETTLEMENT vs TIME:\n"
report += "=" * 70 + "\n"
report += f"{'Time (years)':<15} {'Settlement (mm)':<20} {'U (%)':<15}\n"
report += "-" * 70 + "\n"
for t in t_check:
settlement, _ = self.calculate_settlement(t)
U = self.calculate_total_U(t)
U_avg = np.mean(U)
report += f"{t:<15.2f} {settlement * 1000:<20.2f} {U_avg * 100:<15.1f}\n"
report += "=" * 70 + "\n"
return report
def example_usage():
"""Example usage of PVD consolidation analysis"""
# Define soil layers (from top to bottom)
layers = [
SoilLayer(
thickness=5.0, # 5 m thick
Cv=0.5, # 0.5 m²/year vertical consolidation
Ch=1.5, # 1.5 m²/year horizontal consolidation
RR=0.05, # Recompression ratio
CR=0.30, # Compression ratio
sigma_ini=50.0, # Initial effective stress 50 kPa
sigma_p=80.0, # Preconsolidation pressure 80 kPa
kh=2.0, # 2 m/year horizontal permeability
ks=1.0, # 1 m/year smear zone permeability
),
SoilLayer(
thickness=8.0, # 8 m thick
Cv=0.3,
Ch=1.0,
RR=0.04,
CR=0.35,
sigma_ini=90.0,
sigma_p=90.0,
kh=1.5, # Lower permeability
ks=0.75,
),
SoilLayer(
thickness=7.0, # 7 m thick
Cv=0.4,
Ch=1.2,
RR=0.045,
CR=0.32,
sigma_ini=140.0,
sigma_p=150.0,
kh=1.8,
ks=0.9,
),
]
# Define PVD properties
pvd = PVDProperties(
dw=0.05, # 50 mm equivalent drain diameter
ds=0.15, # 150 mm smear zone diameter
De=1.5, # 1.5 m equivalent unit cell diameter (triangular spacing)
L_drain=20.0, # 20 m total drain length (two-way drainage)
qw=100.0, # 100 m³/year well discharge capacity
)
# Applied surcharge
surcharge = 100.0 # 100 kPa
# Create analysis object
analysis = PVDConsolidation(layers, pvd, surcharge, dt=0.01)
# Generate summary report
t_check = [0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0]
print(analysis.get_summary_report(t_check))
# Plot settlement vs time
print("\nGenerating settlement vs time plot...")
time, settlement = analysis.plot_settlement_vs_time(
t_max=20.0, n_points=200, save_path="settlement_vs_time.png"
)
# Plot consolidation profiles at different times
print("Generating consolidation profile plots...")
for t in [0.5, 2.0, 10.0]:
analysis.plot_degree_of_consolidation(
t, save_path=f"consolidation_profile_t{t:.1f}.png"
)
print("\nAnalysis complete!")
def load_yaml_data(yaml_file: str) -> Dict[str, Any]:
"""
Load PVD analysis data from YAML file
Parameters:
-----------
yaml_file : str
Path to YAML file
Returns:
--------
data : dict
Dictionary containing analysis parameters
"""
with open(yaml_file, "r") as f:
data = yaml.safe_load(f)
return data
def create_analysis_from_yaml(yaml_file: str) -> PVDConsolidation:
"""
Create PVDConsolidation object from YAML file
Parameters:
-----------
yaml_file : str
Path to YAML file
Returns:
--------
analysis : PVDConsolidation
PVD consolidation analysis object
"""
data = load_yaml_data(yaml_file)
# Create soil layers
layers = []
for layer_data in data["soil_layers"]:
layer = SoilLayer(
thickness=layer_data["thickness"],
Cv=layer_data["Cv"],
Ch=layer_data["Ch"],
RR=layer_data["RR"],
CR=layer_data["CR"],
sigma_ini=layer_data["sigma_ini"],
sigma_p=layer_data["sigma_p"],
kh=layer_data["kh"],
ks=layer_data["ks"],
)
layers.append(layer)
# Create PVD properties
pvd_data = data["pvd"]
pvd = PVDProperties(
dw=pvd_data["dw"],
ds=pvd_data["ds"],
De=pvd_data["De"],
L_drain=pvd_data["L_drain"],
qw=pvd_data["qw"],
)
# Get analysis parameters
surcharge = data["analysis"]["surcharge"]
dt = data["analysis"].get("dt", 0.01)
# Create analysis object
analysis = PVDConsolidation(layers, pvd, surcharge, dt)
return analysis, data
def run_analysis_from_yaml(yaml_file: str, output_dir: str = None):
"""
Run complete PVD analysis from YAML file
Parameters:
-----------
yaml_file : str
Path to YAML input file
output_dir : str, optional
Directory to save output files
"""
print(f"Loading data from: {yaml_file}")
analysis, data = create_analysis_from_yaml(yaml_file)
# Create output directory
if output_dir is None:
output_dir = os.path.dirname(yaml_file) or "."
os.makedirs(output_dir, exist_ok=True)
# Get analysis parameters
analysis_params = data["analysis"]
t_max = analysis_params.get("t_max", 20.0)
n_points = analysis_params.get("n_points", 200)
t_check = analysis_params.get("t_check", [0.1, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0])
t_profiles = analysis_params.get("t_profiles", [0.5, 2.0, 10.0])
# Generate summary report
print("\n" + "=" * 70)
print("RUNNING PVD CONSOLIDATION ANALYSIS")
print("=" * 70 + "\n")
report = analysis.get_summary_report(t_check)
print(report)
# Save report to file
report_file = os.path.join(output_dir, "pvd_analysis_report.txt")
with open(report_file, "w") as f:
f.write(report)
print(f"\nReport saved to: {report_file}")
# Plot settlement vs time
print("\nGenerating settlement vs time plot...")
settlement_plot = os.path.join(output_dir, "settlement_vs_time.png")
time, settlement = analysis.plot_settlement_vs_time(
t_max=t_max, n_points=n_points, save_path=settlement_plot
)
print(f"Plot saved to: {settlement_plot}")
# Save settlement data to CSV
csv_file = os.path.join(output_dir, "settlement_data.csv")
np.savetxt(
csv_file,
np.column_stack((time, settlement * 1000)),
delimiter=",",
header="Time (years),Settlement (mm)",
comments="",
)
print(f"Data saved to: {csv_file}")
# Plot consolidation profiles at different times
print("\nGenerating consolidation profile plots...")
for t in t_profiles:
profile_plot = os.path.join(output_dir, f"consolidation_profile_t{t:.1f}y.png")
analysis.plot_degree_of_consolidation(t, save_path=profile_plot)
print(f"Profile at t={t:.1f} years saved to: {profile_plot}")
print("\n" + "=" * 70)
print("ANALYSIS COMPLETE!")
print("=" * 70)
def main():
"""Main CLI interface"""
parser = argparse.ArgumentParser(
description="PVD Consolidation Analysis - Settlement vs Time Calculator",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Run analysis from YAML file
python pvd_consolidation.py --data input.yaml
# Specify output directory
python pvd_consolidation.py --data input.yaml --output results/
# Run example analysis
python pvd_consolidation.py --example
""",
)
parser.add_argument("--data", type=str, help="Path to YAML input file")
parser.add_argument(
"--output",
type=str,
default=None,
help="Output directory for results (default: same as input file)",
)
parser.add_argument(
"--example",
action="store_true",
help="Run example analysis with default parameters",
)
args = parser.parse_args()
if args.example:
print("Running example analysis...")
example_usage()
elif args.data:
if not os.path.exists(args.data):
print(f"Error: Input file '{args.data}' not found!")
return
run_analysis_from_yaml(args.data, args.output)
else:
parser.print_help()
if __name__ == "__main__":
main()
|