""" Streamlit App for PVD Consolidation Analysis Shows settlement vs time curve with vacuum and staged loading support """ import streamlit as st import numpy as np import matplotlib.pyplot as plt from pvd_consolidation import PVDConsolidation, SoilLayer, PVDProperties, LoadingStage # Page configuration st.set_page_config( page_title="PVD Consolidation Analysis", page_icon="📊", layout="wide" ) # Title st.title("🏗️ PVD Consolidation Analysis") st.markdown("### Settlement vs Time Calculator") # Sidebar for inputs st.sidebar.header("Input Parameters") # Soil Layer Inputs st.sidebar.subheader("Soil Properties") n_layers = st.sidebar.number_input( "Number of Layers", min_value=1, max_value=10, value=1 ) layers = [] for i in range(n_layers): st.sidebar.markdown(f"**Layer {i + 1}**") col1, col2 = st.sidebar.columns(2) with col1: thickness = st.number_input( f"Thickness (m)", min_value=0.1, value=10.0, step=0.5, key=f"thick_{i}" ) Cv = st.number_input( f"Cv (m²/yr)", min_value=0.01, value=0.5, step=0.1, key=f"cv_{i}" ) Ch = st.number_input( f"Ch (m²/yr)", min_value=0.01, value=2.0, step=0.1, key=f"ch_{i}" ) RR = st.number_input( f"RR", min_value=0.001, value=0.05, step=0.01, format="%.3f", key=f"rr_{i}" ) CR = st.number_input( f"CR", min_value=0.001, value=0.30, step=0.01, format="%.3f", key=f"cr_{i}" ) with col2: sigma_ini = st.number_input( f"σ'ini (kPa)", min_value=1.0, value=50.0, step=5.0, key=f"sini_{i}" ) sigma_p = st.number_input( f"σ'p (kPa)", min_value=1.0, value=80.0, step=5.0, key=f"sp_{i}" ) kh = st.number_input( f"kh (m/yr)", min_value=0.1, value=2.0, step=0.1, key=f"kh_{i}" ) ks = st.number_input( f"ks (m/yr)", min_value=0.1, value=1.0, step=0.1, key=f"ks_{i}" ) layers.append( SoilLayer( thickness=thickness, Cv=Cv, Ch=Ch, RR=RR, CR=CR, sigma_ini=sigma_ini, sigma_p=sigma_p, kh=kh, ks=ks, ) ) st.sidebar.markdown("---") # PVD Properties st.sidebar.subheader("PVD Properties") dw = st.sidebar.number_input( "Drain diameter dw (m)", min_value=0.01, value=0.05, step=0.01, format="%.3f" ) ds = st.sidebar.number_input( "Smear zone ds (m)", min_value=0.01, value=0.15, step=0.01, format="%.3f" ) De = st.sidebar.number_input("Unit cell De (m)", min_value=0.1, value=1.5, step=0.1) L_drain = st.sidebar.number_input( "Drain length L (m)", min_value=1.0, value=10.0, step=1.0 ) well_resistance = st.sidebar.selectbox( "Well Resistance", ["Negligible (qw → ∞)", "Custom qw"] ) if well_resistance == "Custom qw": qw = st.sidebar.number_input("qw (m³/yr)", min_value=1.0, value=100.0, step=10.0) else: qw = 1e12 # Very large value for negligible resistance # Vacuum depth loss option vacuum_depth_loss = st.sidebar.checkbox( "Vacuum loss with depth", value=True, help="If checked: vacuum decreases with depth (u(z) = u_surface × exp(-z/L)). If unchecked: uniform vacuum at all depths.", ) pvd = PVDProperties( dw=dw, ds=ds, De=De, L_drain=L_drain, qw=qw, vacuum_depth_loss=vacuum_depth_loss ) # Loading Configuration st.sidebar.subheader("Loading Configuration") loading_type = st.sidebar.radio( "Loading Type", ["Single Stage", "Multi-Stage"], help="Single stage: One loading condition. Multi-stage: Multiple loading stages over time.", ) if loading_type == "Single Stage": st.sidebar.markdown("**Single Stage Loading**") surcharge = st.sidebar.number_input( "Surcharge (kPa)", min_value=0.0, value=100.0, step=10.0 ) vacuum = st.sidebar.number_input( "Vacuum (kPa)", min_value=0.0, value=0.0, step=10.0, help="Vacuum pressure (positive value). 80 kPa vacuum ≈ 80 kPa surcharge", ) loading_stages = None else: # Multi-Stage st.sidebar.markdown("**Multi-Stage Loading**") n_stages = st.sidebar.number_input( "Number of Stages", min_value=1, max_value=10, value=2 ) loading_stages = [] for i in range(n_stages): st.sidebar.markdown(f"**Stage {i + 1}**") col1, col2, col3 = st.sidebar.columns(3) with col1: start_time = st.number_input( f"Time (y)", min_value=0.0, value=float(i * 0.5), step=0.1, key=f"time_{i}", ) with col2: stage_surcharge = st.number_input( f"Surcharge", min_value=0.0, value=50.0, step=10.0, key=f"sur_{i}" ) with col3: stage_vacuum = st.number_input( f"Vacuum", min_value=0.0, value=0.0, step=10.0, key=f"vac_{i}" ) loading_stages.append(LoadingStage(start_time, stage_surcharge, stage_vacuum)) surcharge = 0.0 # Not used in multi-stage vacuum = 0.0 # Analysis Parameters st.sidebar.subheader("Analysis Parameters") t_max = st.sidebar.number_input("Max Time (years)", min_value=0.1, value=2.0, step=0.1) dt = st.sidebar.number_input( "Time Step (years)", min_value=0.001, value=0.01, step=0.001, format="%.3f" ) # Run Analysis Button if st.sidebar.button("🚀 Run Analysis", type="primary"): with st.spinner("Calculating consolidation..."): try: # Create analysis with vacuum and staged loading support if loading_stages: analysis = PVDConsolidation( layers, pvd, loading_stages=loading_stages, dt=dt ) else: analysis = PVDConsolidation( layers, pvd, surcharge=surcharge, vacuum=vacuum, dt=dt ) # Calculate settlement vs time time, settlement = analysis.settlement_vs_time(t_max=t_max, n_points=200) settlement_mm = settlement * 1000 # Convert to mm # Get PVD factors Fn, Fs, Fr = analysis.calculate_pvd_factors() F_total = Fn + Fs + Fr # Store results in session state st.session_state.time = time st.session_state.settlement = settlement_mm st.session_state.Fn = Fn st.session_state.Fs = Fs st.session_state.Fr = Fr st.session_state.F_total = F_total st.session_state.analysis_done = True except Exception as e: st.error(f"Error in analysis: {str(e)}") st.session_state.analysis_done = False # Display Results if hasattr(st.session_state, "analysis_done") and st.session_state.analysis_done: # Main plot - Settlement vs Time st.subheader("Settlement vs Time") fig, ax = plt.subplots(figsize=(12, 6)) ax.plot(st.session_state.time, st.session_state.settlement, "b-", linewidth=2.5) ax.set_xlabel("Time (years)", fontsize=14, fontweight="bold") ax.set_ylabel("Settlement (mm)", fontsize=14, fontweight="bold") ax.set_title( "PVD Consolidation - Settlement vs Time", fontsize=16, fontweight="bold" ) ax.grid(True, alpha=0.3, linestyle="--") ax.tick_params(labelsize=12) # Invert y-axis (settlement goes down) ax.invert_yaxis() # Add final settlement annotation final_settlement = st.session_state.settlement[-1] ax.axhline( y=final_settlement, color="r", linestyle="--", alpha=0.5, label=f"Final Settlement = {final_settlement:.1f} mm", ) ax.legend(fontsize=12) st.pyplot(fig) # Summary statistics st.subheader("Analysis Summary") col1, col2, col3, col4 = st.columns(4) with col1: st.metric("Final Settlement", f"{final_settlement:.1f} mm") with col2: # Find time to 90% consolidation target_settlement = 0.9 * final_settlement idx_90 = np.argmax(st.session_state.settlement >= target_settlement) t_90 = ( st.session_state.time[idx_90] if idx_90 > 0 else st.session_state.time[-1] ) st.metric("Time to 90% U", f"{t_90:.2f} years") with col3: # Find time to 50% consolidation target_settlement = 0.5 * final_settlement idx_50 = np.argmax(st.session_state.settlement >= target_settlement) t_50 = ( st.session_state.time[idx_50] if idx_50 > 0 else st.session_state.time[-1] ) st.metric("Time to 50% U", f"{t_50:.2f} years") with col4: st.metric("Total Resistance F", f"{st.session_state.F_total:.2f}") # PVD Factors st.subheader("PVD Influence Factors") col1, col2, col3 = st.columns(3) with col1: st.metric("Geometric Factor (Fn)", f"{st.session_state.Fn:.3f}") with col2: st.metric("Smear Factor (Fs)", f"{st.session_state.Fs:.3f}") with col3: st.metric("Well Resistance (Fr)", f"{st.session_state.Fr:.3f}") # Download data st.subheader("Download Results") # Prepare CSV data csv_data = "Time (years),Settlement (mm)\n" for t, s in zip(st.session_state.time, st.session_state.settlement): csv_data += f"{t:.4f},{s:.2f}\n" st.download_button( label="📥 Download Settlement Data (CSV)", data=csv_data, file_name="settlement_data.csv", mime="text/csv", ) else: # Initial instructions st.info( "👈 Configure your parameters in the sidebar and click **Run Analysis** to see results" ) st.markdown(""" ### Instructions: 1. **Soil Properties**: Enter the properties for each soil layer - Thickness (m) - Cv: Vertical coefficient of consolidation (m²/year) - Ch: Horizontal coefficient of consolidation (m²/year) - RR: Recompression ratio - CR: Compression ratio - σ'ini: Initial effective stress (kPa) - σ'p: Preconsolidation pressure (kPa) 2. **PVD Properties**: Configure the drain installation - dw: Equivalent drain diameter (m) - ds: Smear zone diameter (m) - De: Equivalent unit cell diameter (m) - L: Drain length (m) - kh: Horizontal permeability (m/year) - ks: Smear zone permeability (m/year) - qw: Well discharge capacity (m³/year) 3. **Analysis Parameters**: - Surcharge: Applied load (kPa) - Max Time: Analysis duration (years) - Time Step: Calculation step size (years) 4. Click **Run Analysis** to calculate and visualize results """) # Footer st.sidebar.markdown("---") st.sidebar.markdown("**PVD Consolidation Calculator**") st.sidebar.markdown("Version 1.0")