Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
import json
|
| 4 |
+
import base64
|
| 5 |
+
from PIL import Image, ImageDraw, ImageFont
|
| 6 |
+
import io
|
| 7 |
+
|
| 8 |
+
def process_with_openrouter(image, prompt, api_key, model="google/gemini-2.5-pro", temperature=0.5):
|
| 9 |
+
"""Process image with OpenRouter API for object detection"""
|
| 10 |
+
if not api_key:
|
| 11 |
+
return "Please enter your OpenRouter API key", "error"
|
| 12 |
+
|
| 13 |
+
if image is None:
|
| 14 |
+
return "Please upload an image", "error"
|
| 15 |
+
|
| 16 |
+
try:
|
| 17 |
+
buffered = io.BytesIO()
|
| 18 |
+
image.save(buffered, format="PNG")
|
| 19 |
+
img_base64 = base64.b64encode(buffered.getvalue()).decode()
|
| 20 |
+
|
| 21 |
+
headers = {
|
| 22 |
+
"Authorization": f"Bearer {api_key}",
|
| 23 |
+
"Content-Type": "application/json"
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
data = {
|
| 27 |
+
"model": model,
|
| 28 |
+
"messages": [
|
| 29 |
+
{
|
| 30 |
+
"role": "user",
|
| 31 |
+
"content": [
|
| 32 |
+
{"type": "text", "text": prompt},
|
| 33 |
+
{
|
| 34 |
+
"type": "image_url",
|
| 35 |
+
"image_url": {"url": f"data:image/png;base64,{img_base64}"}
|
| 36 |
+
}
|
| 37 |
+
]
|
| 38 |
+
}
|
| 39 |
+
],
|
| 40 |
+
"temperature": temperature
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
response = requests.post(
|
| 44 |
+
"https://openrouter.ai/api/v1/chat/completions",
|
| 45 |
+
headers=headers,
|
| 46 |
+
json=data,
|
| 47 |
+
timeout=60
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
if response.status_code == 200:
|
| 51 |
+
result = response.json()
|
| 52 |
+
content = result['choices'][0]['message']['content']
|
| 53 |
+
|
| 54 |
+
if '```json' in content:
|
| 55 |
+
content = content.split('```json')[1].split('```')[0].strip()
|
| 56 |
+
elif '```' in content:
|
| 57 |
+
content = content.split('```')[1].split('```')[0].strip()
|
| 58 |
+
|
| 59 |
+
return content, None
|
| 60 |
+
else:
|
| 61 |
+
return f"Error: {response.status_code} - {response.text}", "error"
|
| 62 |
+
|
| 63 |
+
except Exception as e:
|
| 64 |
+
return f"Error processing request: {str(e)}", "error"
|
| 65 |
+
|
| 66 |
+
def draw_bounding_boxes(image, detections):
|
| 67 |
+
"""Draw bounding boxes with detailed labels on the image"""
|
| 68 |
+
if not detections or len(detections) == 0:
|
| 69 |
+
return image
|
| 70 |
+
|
| 71 |
+
annotated_image = image.copy()
|
| 72 |
+
draw = ImageDraw.Draw(annotated_image)
|
| 73 |
+
|
| 74 |
+
try:
|
| 75 |
+
font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 14)
|
| 76 |
+
small_font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 12)
|
| 77 |
+
except:
|
| 78 |
+
font = ImageFont.load_default()
|
| 79 |
+
small_font = ImageFont.load_default()
|
| 80 |
+
|
| 81 |
+
colors = ["#FF0000", "#00FF00", "#0000FF", "#FFFF00", "#FF00FF", "#00FFFF", "#FFA500", "#800080"]
|
| 82 |
+
|
| 83 |
+
for i, detection in enumerate(detections):
|
| 84 |
+
if all(key in detection for key in ['x', 'y', 'width', 'height']):
|
| 85 |
+
x = detection['x'] * image.width
|
| 86 |
+
y = detection['y'] * image.height
|
| 87 |
+
width = detection['width'] * image.width
|
| 88 |
+
height = detection['height'] * image.height
|
| 89 |
+
|
| 90 |
+
# Get detection information
|
| 91 |
+
label = detection.get('label', f'Detection {i+1}')
|
| 92 |
+
class_name = detection.get('class', 'unknown')
|
| 93 |
+
details = detection.get('details', '')
|
| 94 |
+
criteria_match = detection.get('criteria_match', '')
|
| 95 |
+
confidence = detection.get('confidence', 1.0)
|
| 96 |
+
|
| 97 |
+
x1, y1 = int(x), int(y)
|
| 98 |
+
x2, y2 = int(x + width), int(y + height)
|
| 99 |
+
|
| 100 |
+
x1 = max(0, min(x1, image.width))
|
| 101 |
+
y1 = max(0, min(y1, image.height))
|
| 102 |
+
x2 = max(0, min(x2, image.width))
|
| 103 |
+
y2 = max(0, min(y2, image.height))
|
| 104 |
+
|
| 105 |
+
color = colors[i % len(colors)]
|
| 106 |
+
|
| 107 |
+
# Draw bounding box with thicker line for better visibility
|
| 108 |
+
draw.rectangle([x1, y1, x2, y2], outline=color, width=4)
|
| 109 |
+
|
| 110 |
+
# Create multi-line label with detailed information
|
| 111 |
+
display_lines = []
|
| 112 |
+
display_lines.append(f"{class_name} ({confidence:.2f})")
|
| 113 |
+
|
| 114 |
+
if details:
|
| 115 |
+
# Truncate details if too long
|
| 116 |
+
details_short = details[:40] + "..." if len(details) > 40 else details
|
| 117 |
+
display_lines.append(details_short)
|
| 118 |
+
|
| 119 |
+
if criteria_match:
|
| 120 |
+
display_lines.append(f"Criteria: {criteria_match}")
|
| 121 |
+
|
| 122 |
+
# Calculate total label size
|
| 123 |
+
max_width = 0
|
| 124 |
+
total_height = 0
|
| 125 |
+
line_heights = []
|
| 126 |
+
|
| 127 |
+
for line in display_lines:
|
| 128 |
+
text_bbox = draw.textbbox((0, 0), line, font=small_font)
|
| 129 |
+
line_width = text_bbox[2] - text_bbox[0]
|
| 130 |
+
line_height = text_bbox[3] - text_bbox[1]
|
| 131 |
+
max_width = max(max_width, line_width)
|
| 132 |
+
total_height += line_height + 2
|
| 133 |
+
line_heights.append(line_height)
|
| 134 |
+
|
| 135 |
+
# Position label above the box, or below if no space above
|
| 136 |
+
if y1 - total_height - 4 >= 0:
|
| 137 |
+
label_y = y1 - total_height - 4
|
| 138 |
+
else:
|
| 139 |
+
label_y = y2 + 2
|
| 140 |
+
|
| 141 |
+
label_x = x1
|
| 142 |
+
|
| 143 |
+
# Ensure label stays within image bounds
|
| 144 |
+
if label_x + max_width > image.width:
|
| 145 |
+
label_x = image.width - max_width - 4
|
| 146 |
+
|
| 147 |
+
# Draw label background
|
| 148 |
+
draw.rectangle(
|
| 149 |
+
[label_x - 2, label_y, label_x + max_width + 4, label_y + total_height + 2],
|
| 150 |
+
fill=color,
|
| 151 |
+
outline=color
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
# Draw each line of text
|
| 155 |
+
current_y = label_y + 2
|
| 156 |
+
for j, line in enumerate(display_lines):
|
| 157 |
+
draw.text((label_x + 2, current_y), line, fill="white", font=small_font)
|
| 158 |
+
current_y += line_heights[j] + 2
|
| 159 |
+
|
| 160 |
+
return annotated_image
|
| 161 |
+
|
| 162 |
+
def create_detection_prompt(detailed_classes, confidence_threshold=0.5, detection_mode="specific"):
|
| 163 |
+
"""Create a detection prompt for detailed class specifications with different modes"""
|
| 164 |
+
if isinstance(detailed_classes, str):
|
| 165 |
+
detailed_classes = [cls.strip() for cls in detailed_classes.split('\n') if cls.strip()]
|
| 166 |
+
|
| 167 |
+
# Build detailed detection instructions
|
| 168 |
+
if detection_mode == "specific":
|
| 169 |
+
condition_text = "ONLY detect objects that match these specific detailed criteria. Ignore all other objects:"
|
| 170 |
+
elif detection_mode == "include":
|
| 171 |
+
condition_text = "Detect objects matching these detailed criteria AND any other objects you can identify:"
|
| 172 |
+
else: # "exclude"
|
| 173 |
+
condition_text = "Detect all objects EXCEPT those matching these detailed criteria. Avoid detecting:"
|
| 174 |
+
|
| 175 |
+
# Format each detailed class specification
|
| 176 |
+
detailed_specs = []
|
| 177 |
+
for i, spec in enumerate(detailed_classes, 1):
|
| 178 |
+
detailed_specs.append(f"{i}. {spec}")
|
| 179 |
+
|
| 180 |
+
classes_text = "\n".join(detailed_specs) if detailed_specs else "No specific criteria provided"
|
| 181 |
+
|
| 182 |
+
prompt = f"""{condition_text}
|
| 183 |
+
|
| 184 |
+
{classes_text}
|
| 185 |
+
|
| 186 |
+
Detection Instructions:
|
| 187 |
+
- Carefully analyze each object against the detailed specifications above
|
| 188 |
+
- Only include detections with confidence above {confidence_threshold}
|
| 189 |
+
- For each detection, provide specific measurements, characteristics, or details when possible
|
| 190 |
+
- Be precise about the criteria matching (e.g., actual crack width, size measurements, specific conditions)
|
| 191 |
+
|
| 192 |
+
Output a JSON list where each entry contains:
|
| 193 |
+
- "x": normalized x coordinate (0-1) of top-left corner
|
| 194 |
+
- "y": normalized y coordinate (0-1) of top-left corner
|
| 195 |
+
- "width": normalized width (0-1) of the bounding box
|
| 196 |
+
- "height": normalized height (0-1) of the bounding box
|
| 197 |
+
- "label": detailed description with measurements/characteristics and confidence score
|
| 198 |
+
- "confidence": confidence score (0-1)
|
| 199 |
+
- "class": the general category name
|
| 200 |
+
- "details": specific measurements, characteristics, or conditions observed
|
| 201 |
+
- "criteria_match": which detailed criteria this detection matches (reference number from list above)
|
| 202 |
+
|
| 203 |
+
Example format for crack detection:
|
| 204 |
+
[{{"x": 0.1, "y": 0.2, "width": 0.3, "height": 0.4, "label": "crack width ~3mm, length ~15cm (0.92)", "confidence": 0.92, "class": "crack", "details": "width: 3mm, length: 15cm, surface: concrete", "criteria_match": 1}}]"""
|
| 205 |
+
|
| 206 |
+
return prompt
|
| 207 |
+
|
| 208 |
+
def create_interface():
|
| 209 |
+
"""Create the Gradio interface for object detection"""
|
| 210 |
+
with gr.Blocks(title="Detailed Object Detection", theme=gr.themes.Soft()) as demo:
|
| 211 |
+
gr.Markdown("# π Detailed Object Detection with Custom Specifications")
|
| 212 |
+
gr.Markdown("Detect objects with detailed specifications (e.g., 'crack width more than 2mm', 'rust spots larger than 5cm')")
|
| 213 |
+
|
| 214 |
+
with gr.Row():
|
| 215 |
+
with gr.Column(scale=1):
|
| 216 |
+
gr.Markdown("## βοΈ Configuration")
|
| 217 |
+
api_key = gr.Textbox(
|
| 218 |
+
label="OpenRouter API Key",
|
| 219 |
+
placeholder="Enter your OpenRouter API key...",
|
| 220 |
+
type="password"
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
model = gr.Dropdown(
|
| 224 |
+
choices=[
|
| 225 |
+
"google/gemini-2.5-pro",
|
| 226 |
+
"google/gemini-1.5-pro",
|
| 227 |
+
"google/gemini-1.5-flash",
|
| 228 |
+
"anthropic/claude-3.5-sonnet",
|
| 229 |
+
"openai/gpt-4o",
|
| 230 |
+
"openai/gpt-4o-mini"
|
| 231 |
+
],
|
| 232 |
+
value="google/gemini-2.5-pro",
|
| 233 |
+
label="Detection Model"
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
detection_mode = gr.Radio(
|
| 237 |
+
choices=[
|
| 238 |
+
("Detect Only These Specifications", "specific"),
|
| 239 |
+
("Include These + Others", "include"),
|
| 240 |
+
("Exclude These Specifications", "exclude")
|
| 241 |
+
],
|
| 242 |
+
value="specific",
|
| 243 |
+
label="Detection Mode",
|
| 244 |
+
info="How to handle the specified detailed criteria"
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
detailed_specifications = gr.Textbox(
|
| 248 |
+
label="Detailed Detection Specifications",
|
| 249 |
+
placeholder="""Enter each specification on a new line, e.g.:
|
| 250 |
+
crack width more than 2mm
|
| 251 |
+
rust spots larger than 5cm in diameter
|
| 252 |
+
concrete spalling deeper than 1cm
|
| 253 |
+
structural damage with visible deformation
|
| 254 |
+
paint peeling areas greater than 10cmΒ²""",
|
| 255 |
+
value="""crack width more than 2mm
|
| 256 |
+
rust spots larger than 5cm in diameter
|
| 257 |
+
concrete spalling deeper than 1cm""",
|
| 258 |
+
lines=8,
|
| 259 |
+
info="Enter detailed specifications, one per line"
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
confidence_threshold = gr.Slider(
|
| 263 |
+
minimum=0.1,
|
| 264 |
+
maximum=1.0,
|
| 265 |
+
value=0.5,
|
| 266 |
+
step=0.05,
|
| 267 |
+
label="Confidence Threshold",
|
| 268 |
+
info="Minimum confidence for detection"
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
temperature = gr.Slider(
|
| 272 |
+
minimum=0,
|
| 273 |
+
maximum=1,
|
| 274 |
+
value=0.3,
|
| 275 |
+
step=0.05,
|
| 276 |
+
label="Temperature",
|
| 277 |
+
info="Lower values for more consistent results"
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
image_input = gr.Image(
|
| 281 |
+
type="pil",
|
| 282 |
+
label="Upload Image for Detection"
|
| 283 |
+
)
|
| 284 |
+
|
| 285 |
+
detect_btn = gr.Button("π Detect Objects", variant="primary", size="lg")
|
| 286 |
+
|
| 287 |
+
with gr.Column(scale=1):
|
| 288 |
+
gr.Markdown("## π Detection Results")
|
| 289 |
+
|
| 290 |
+
annotated_image = gr.Image(
|
| 291 |
+
label="Detected Objects",
|
| 292 |
+
type="pil"
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
detection_results = gr.Textbox(
|
| 296 |
+
label="Detection Details (JSON)",
|
| 297 |
+
lines=10,
|
| 298 |
+
show_copy_button=True
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
detection_summary = gr.Textbox(
|
| 302 |
+
label="Detection Summary",
|
| 303 |
+
lines=3
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
def process_detection(image, detailed_specs, conf_threshold, api_key_val, model_val, temp_val, mode_val):
|
| 307 |
+
if not api_key_val:
|
| 308 |
+
return None, "β Please enter your OpenRouter API key", "No API key provided"
|
| 309 |
+
|
| 310 |
+
if image is None:
|
| 311 |
+
return None, "β Please upload an image", "No image uploaded"
|
| 312 |
+
|
| 313 |
+
if not detailed_specs or not detailed_specs.strip():
|
| 314 |
+
return None, "β Please enter at least one detailed specification", "No specifications provided"
|
| 315 |
+
|
| 316 |
+
try:
|
| 317 |
+
prompt = create_detection_prompt(detailed_specs, conf_threshold, mode_val)
|
| 318 |
+
|
| 319 |
+
result, error = process_with_openrouter(image, prompt, api_key_val, model_val, temp_val)
|
| 320 |
+
|
| 321 |
+
if error:
|
| 322 |
+
return None, f"β Error: {result}", "Detection failed"
|
| 323 |
+
|
| 324 |
+
detections = json.loads(result)
|
| 325 |
+
|
| 326 |
+
if isinstance(detections, list) and len(detections) > 0:
|
| 327 |
+
annotated_img = draw_bounding_boxes(image, detections)
|
| 328 |
+
|
| 329 |
+
filtered_detections = [d for d in detections if d.get('confidence', 1.0) >= conf_threshold]
|
| 330 |
+
|
| 331 |
+
mode_descriptions = {
|
| 332 |
+
"specific": "Detecting only objects matching detailed specifications",
|
| 333 |
+
"include": "Including specified detailed criteria + other objects",
|
| 334 |
+
"exclude": "Excluding objects matching detailed specifications"
|
| 335 |
+
}
|
| 336 |
+
|
| 337 |
+
summary_text = f"β
{mode_descriptions.get(mode_val, 'Detection')} - Found {len(filtered_detections)} objects"
|
| 338 |
+
|
| 339 |
+
if filtered_detections:
|
| 340 |
+
# Group by class and show details
|
| 341 |
+
class_details = {}
|
| 342 |
+
for det in filtered_detections:
|
| 343 |
+
class_name = det.get('class', 'unknown')
|
| 344 |
+
details = det.get('details', '')
|
| 345 |
+
criteria_match = det.get('criteria_match', '')
|
| 346 |
+
|
| 347 |
+
if class_name not in class_details:
|
| 348 |
+
class_details[class_name] = []
|
| 349 |
+
|
| 350 |
+
class_details[class_name].append({
|
| 351 |
+
'details': details,
|
| 352 |
+
'criteria': criteria_match,
|
| 353 |
+
'confidence': det.get('confidence', 1.0)
|
| 354 |
+
})
|
| 355 |
+
|
| 356 |
+
summary_text += "\n\nDetailed Results:"
|
| 357 |
+
for class_name, items in class_details.items():
|
| 358 |
+
summary_text += f"\nβ’ {class_name} ({len(items)} found):"
|
| 359 |
+
for item in items[:3]: # Show first 3 items
|
| 360 |
+
summary_text += f"\n - {item['details']} (conf: {item['confidence']:.2f})"
|
| 361 |
+
if item['criteria']:
|
| 362 |
+
summary_text += f" [criteria: {item['criteria']}]"
|
| 363 |
+
if len(items) > 3:
|
| 364 |
+
summary_text += f"\n ... and {len(items)-3} more"
|
| 365 |
+
|
| 366 |
+
return annotated_img, json.dumps(filtered_detections, indent=2), summary_text
|
| 367 |
+
else:
|
| 368 |
+
return image, "No objects detected matching detailed specifications", "No detections matching criteria above confidence threshold"
|
| 369 |
+
|
| 370 |
+
except json.JSONDecodeError:
|
| 371 |
+
return None, f"β Invalid JSON response: {result}", "JSON parsing failed"
|
| 372 |
+
except Exception as e:
|
| 373 |
+
return None, f"β Error: {str(e)}", "Processing error"
|
| 374 |
+
|
| 375 |
+
detect_btn.click(
|
| 376 |
+
process_detection,
|
| 377 |
+
inputs=[image_input, detailed_specifications, confidence_threshold, api_key, model, temperature, detection_mode],
|
| 378 |
+
outputs=[annotated_image, detection_results, detection_summary]
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
gr.Markdown("""
|
| 382 |
+
## π‘ Usage Tips
|
| 383 |
+
- **Specific Mode**: Only detect objects matching your detailed specifications
|
| 384 |
+
- **Include Mode**: Detect your specified criteria plus any other objects found
|
| 385 |
+
- **Exclude Mode**: Detect everything except objects matching your specifications
|
| 386 |
+
|
| 387 |
+
### Example Detailed Specifications:
|
| 388 |
+
```
|
| 389 |
+
crack width more than 2mm
|
| 390 |
+
rust spots larger than 5cm in diameter
|
| 391 |
+
concrete spalling deeper than 1cm
|
| 392 |
+
structural damage with visible deformation
|
| 393 |
+
paint peeling areas greater than 10cmΒ²
|
| 394 |
+
corrosion affecting more than 20% of surface area
|
| 395 |
+
missing bolts or fasteners
|
| 396 |
+
water damage stains larger than 15cm
|
| 397 |
+
```
|
| 398 |
+
|
| 399 |
+
- Enter one detailed specification per line
|
| 400 |
+
- Be specific about measurements, sizes, conditions
|
| 401 |
+
- Adjust confidence threshold to filter weak detections
|
| 402 |
+
- Use lower temperature values for consistent results
|
| 403 |
+
- Get your API key from [openrouter.ai](https://openrouter.ai/)
|
| 404 |
+
""")
|
| 405 |
+
|
| 406 |
+
return demo
|
| 407 |
+
|
| 408 |
+
if __name__ == "__main__":
|
| 409 |
+
print("π Starting Object Detection App...")
|
| 410 |
+
demo = create_interface()
|
| 411 |
+
demo.launch(share=False, inbrowser=True)
|