ibuilder / agents /profile_extractor.py
Soufianesejjari's picture
Add experience management and skill categorization to profile model
b39667b
"""
Agent for extracting profile information from resumes
"""
import groq
from models import Profile, SocialMedia, Project, Skill, Education, Experience, Category
from typing import List, Dict, Any, Optional
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
import json
from config import get_settings
import logging
settings = get_settings()
# Configure logging
logging.basicConfig(
level=logging.DEBUG if settings.DEBUG else logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
class ProfileExtractor:
"""
Class for extracting profile information from resume text
"""
def __init__(self):
logger.debug("Initializing ProfileExtractor")
self.groq_api_key = settings.GROQ_API_KEY
self.model_name = settings.MODEL_NAME
self.temperature = settings.TEMPERATURE
self.max_tokens = settings.MAX_TOKENS
self.llm = self._initialize_llm()
def _initialize_llm(self) -> ChatGroq:
"""Initialize the language model client"""
logger.debug("Initializing language model client")
return ChatGroq(
groq_api_key=self.groq_api_key,
model_name=self.model_name,
temperature=self.temperature,
max_tokens=self.max_tokens
)
def extract_profile(self, pdf_text: str) -> Profile:
"""
Main method to extract profile information from PDF text
Args:
pdf_text: Text extracted from a resume PDF
Returns:
Profile object with extracted information
"""
logger.info("Extracting profile information")
try:
profile = self._extract_with_langchain(pdf_text)
logger.info("Profile extracted successfully with LangChain")
return profile
except Exception as e:
logger.error(f"LangChain extraction failed: {e}")
if settings.DEBUG:
print(f"LangChain extraction failed: {e}")
return Profile(name="N/A", title="N/A", email="N/A", bio="N/A")
def _extract_with_langchain(self, pdf_text: str) -> Profile:
"""Extract profile with structured LangChain approach"""
logger.debug("Extracting profile with LangChain")
format_instructions = """
Extract the following information from the resume:
1. Full name
2. Professional title
3. Email address
4. Bio (a 50-100 word professional summary)
5. Tagline (a short 5-10 word catchy phrase summarizing professional identity)
6. Social media links (LinkedIn, GitHub, Instagram)
7. Projects (with title, description, and tech stack)
8. Skills (with category only one of : Technical, Soft Skills, or Domain Knowledge)
9. Education history (with school, degree, field of study, start date and end date)
10. Work experience (with company, position, start date, end date, and description)
Return the information in the following JSON format:
{
"name": "Full Name",
"title": "Professional Title",
"email": "email@example.com",
"bio": "Professional biography...",
"tagline": "Catchy professional tagline",
"social": {
"linkedin": "LinkedIn URL or null",
"github": "GitHub URL or null",
"instagram": "Instagram URL or null"
},
"projects": [
{
"title": "Project Title",
"description": "Project Description",
"techStack": "Technologies used"
}
],
"skills": [
{"name": "Skill 1", "category": "Technical"},
{"name": "Skill 2", "category": "Soft Skills"},
{"name": "Skill 3", "category": "Domain Knowledge"}
],
"educations": [
{
"school": "University Name",
"degree": "Degree Type (e.g., Bachelor's, Master's)",
"fieldOfStudy": "Major or Field",
"startDate": "Start Year",
"endDate": "End Year or Present"
}
],
"experiences": [
{
"company": "Company Name",
"position": "Job Title",
"startDate": "Start Date",
"endDate": "End Date or Present",
"description": "Job Description"
}
]
}
If any information is not available, use null for that field.
"""
template = """
You are a professional resume parser. Extract structured information from the following resume:
{pdf_text}
{format_instructions}
"""
prompt = PromptTemplate(
template=template,
input_variables=["pdf_text"],
partial_variables={"format_instructions": format_instructions}
)
chain = prompt | self.llm
result = chain.invoke({"pdf_text": pdf_text})
response_text = result.content
json_start = response_text.find('{')
json_end = response_text.rfind('}') + 1
if (json_start >= 0 and json_end > json_start):
json_str = response_text[json_start:json_end]
profile_dict = json.loads(json_str)
profile = Profile.model_validate(profile_dict)
profile = self._fill_missing_information(profile, pdf_text)
logger.debug("Profile extracted and validated")
return profile
else:
logger.error("No JSON found in the response")
raise ValueError("No JSON found in the response")
def _fill_missing_information(self, profile: Profile, pdf_text: str) -> Profile:
"""
Attempts to fill in any missing information in the profile
"""
logger.debug("Filling missing information in the profile")
if not profile.name or profile.name == "N/A":
try:
response = self.llm.invoke("Extract only the full name from this resume text. Respond with just the name: " + pdf_text[:settings.CHUNK_SIZE])
name = response.content.strip()
if name and name != "N/A":
profile.name = name
logger.debug(f"Extracted name: {name}")
except Exception as e:
logger.error(f"Error extracting name: {e}")
if not profile.title or profile.title == "N/A":
try:
response = self.llm.invoke("Extract only the professional title from this resume text. Respond with just the title: " + pdf_text[:settings.CHUNK_SIZE])
title = response.content.strip()
if title and title != "N/A":
profile.title = title
logger.debug(f"Extracted title: {title}")
except Exception as e:
logger.error(f"Error extracting title: {e}")
if not profile.email or profile.email == "N/A":
try:
response = self.llm.invoke("Extract only the email address from this resume text. Respond with just the email: " + pdf_text)
email = response.content.strip()
if email and email != "N/A" and "@" in email:
profile.email = email
logger.debug(f"Extracted email: {email}")
except Exception as e:
logger.error(f"Error extracting email: {e}")
if not profile.bio or profile.bio == "N/A":
try:
response = self.llm.invoke("Create a short professional biography (around 50-100 words) based on this resume. Focus on skills and experience: " + pdf_text)
bio = response.content.strip()
if bio and bio != "N/A":
profile.bio = bio
logger.debug(f"Created bio: {bio}")
except Exception as e:
logger.error(f"Error creating bio: {e}")
if not profile.educations:
try:
education_prompt = "Extract education history from this resume. For each education entry, provide the school name, degree type, field of study, start date, and end date. Format the response as a list of JSON objects."
response = self.llm.invoke(education_prompt + "\n\n" + pdf_text)
education_text = response.content.strip()
json_start = education_text.find('[')
json_end = education_text.rfind(']') + 1
if json_start >= 0 and json_end > json_start:
edu_json = education_text[json_start:json_end]
educations = json.loads(edu_json)
for edu in educations:
education = Education(
school=edu.get("school", "Unknown"),
degree=edu.get("degree", ""),
fieldOfStudy=edu.get("fieldOfStudy", ""),
startDate=edu.get("startDate", ""),
endDate=edu.get("endDate", "")
)
profile.educations.append(education)
logger.debug(f"Added education: {education}")
except Exception as e:
logger.error(f"Error extracting education: {e}")
if not profile.skills:
try:
skills_prompt = """
Extract skills from this resume text and categorize them.
For each skill, determine if it's a Technical skill, Soft Skill, or Domain Knowledge.
Format the response as a JSON array of objects with 'name' and 'category' fields.
Example: [{"name": "Python", "category": "Technical"}, {"name": "Communication", "category": "Soft Skills"}]
"""
response = self.llm.invoke(skills_prompt + "\n\n" + pdf_text)
skills_text = response.content.strip()
json_start = skills_text.find('[')
json_end = skills_text.rfind(']') + 1
if json_start >= 0 and json_end > json_start:
skills_json = skills_text[json_start:json_end]
skills_list = json.loads(skills_json)
for skill_data in skills_list:
category = None
skill_name = skill_data.get("name", "").strip()
category_str = skill_data.get("category", "").strip()
# Map the category string to our Category enum
if category_str.lower() == "technical":
category = Category.TECHNICAL
elif category_str.lower() in ["soft skills", "soft skill"]:
category = Category.SOFT_SKILLS
elif category_str.lower() in ["domain knowledge", "domain"]:
category = Category.DOMAIN_KNOWLEDGE
if skill_name:
profile.skills.append(Skill(name=skill_name, category=category))
logger.debug(f"Added categorized skill: {skill_name} ({category})")
except Exception as e:
logger.error(f"Error extracting categorized skills: {e}")
if not profile.experiences:
try:
experience_prompt = """
Extract work experience from this resume. For each position, provide:
- Company name
- Position/job title
- Start date
- End date (or "Present" if current)
- Job description (summarize responsibilities and achievements)
Format the response as a list of JSON objects.
"""
response = self.llm.invoke(experience_prompt + "\n\n" + pdf_text)
exp_text = response.content.strip()
json_start = exp_text.find('[')
json_end = exp_text.rfind(']') + 1
if json_start >= 0 and json_end > json_start:
exp_json = exp_text[json_start:json_end]
experiences = json.loads(exp_json)
for exp in experiences:
experience = Experience(
company=exp.get("company", "Unknown"),
position=exp.get("position", ""),
startDate=exp.get("startDate", ""),
endDate=exp.get("endDate", ""),
description=exp.get("description", "")
)
profile.experiences.append(experience)
logger.debug(f"Added experience: {experience.company} - {experience.position}")
except Exception as e:
logger.error(f"Error extracting work experience: {e}")
return profile
# Create module-level instance for easier imports
profile_extractor = ProfileExtractor()
# Export function for backward compatibility
def extract_profile_information(pdf_text: str) -> Profile:
"""Legacy function for backward compatibility"""
return profile_extractor.extract_profile(pdf_text)
# Export the class and the function
__all__ = ['ProfileExtractor', 'extract_profile_information']