orynxml-ai / app /tool /base.py
Speedofmastery's picture
Upload folder using huggingface_hub
2f28b62 verified
import json
from abc import ABC, abstractmethod
from typing import Any, Dict, Optional, Union
from pydantic import BaseModel, Field
from app.utils.logger import logger
# class BaseTool(ABC, BaseModel):
# name: str
# description: str
# parameters: Optional[dict] = None
# class Config:
# arbitrary_types_allowed = True
# async def __call__(self, **kwargs) -> Any:
# """Execute the tool with given parameters."""
# return await self.execute(**kwargs)
# @abstractmethod
# async def execute(self, **kwargs) -> Any:
# """Execute the tool with given parameters."""
# def to_param(self) -> Dict:
# """Convert tool to function call format."""
# return {
# "type": "function",
# "function": {
# "name": self.name,
# "description": self.description,
# "parameters": self.parameters,
# },
# }
class ToolResult(BaseModel):
"""Represents the result of a tool execution."""
output: Any = Field(default=None)
error: Optional[str] = Field(default=None)
base64_image: Optional[str] = Field(default=None)
system: Optional[str] = Field(default=None)
class Config:
arbitrary_types_allowed = True
def __bool__(self):
return any(getattr(self, field) for field in self.__fields__)
def __add__(self, other: "ToolResult"):
def combine_fields(
field: Optional[str], other_field: Optional[str], concatenate: bool = True
):
if field and other_field:
if concatenate:
return field + other_field
raise ValueError("Cannot combine tool results")
return field or other_field
return ToolResult(
output=combine_fields(self.output, other.output),
error=combine_fields(self.error, other.error),
base64_image=combine_fields(self.base64_image, other.base64_image, False),
system=combine_fields(self.system, other.system),
)
def __str__(self):
return f"Error: {self.error}" if self.error else self.output
def replace(self, **kwargs):
"""Returns a new ToolResult with the given fields replaced."""
# return self.copy(update=kwargs)
return type(self)(**{**self.dict(), **kwargs})
class BaseTool(ABC, BaseModel):
"""Consolidated base class for all tools combining BaseModel and Tool functionality.
Provides:
- Pydantic model validation
- Schema registration
- Standardized result handling
- Abstract execution interface
Attributes:
name (str): Tool name
description (str): Tool description
parameters (dict): Tool parameters schema
_schemas (Dict[str, List[ToolSchema]]): Registered method schemas
"""
name: str
description: str
parameters: Optional[dict] = None
# _schemas: Dict[str, List[ToolSchema]] = {}
class Config:
arbitrary_types_allowed = True
underscore_attrs_are_private = False
# def __init__(self, **data):
# """Initialize tool with model validation and schema registration."""
# super().__init__(**data)
# logger.debug(f"Initializing tool class: {self.__class__.__name__}")
# self._register_schemas()
# def _register_schemas(self):
# """Register schemas from all decorated methods."""
# for name, method in inspect.getmembers(self, predicate=inspect.ismethod):
# if hasattr(method, 'tool_schemas'):
# self._schemas[name] = method.tool_schemas
# logger.debug(f"Registered schemas for method '{name}' in {self.__class__.__name__}")
async def __call__(self, **kwargs) -> Any:
"""Execute the tool with given parameters."""
return await self.execute(**kwargs)
@abstractmethod
async def execute(self, **kwargs) -> Any:
"""Execute the tool with given parameters."""
def to_param(self) -> Dict:
"""Convert tool to function call format.
Returns:
Dictionary with tool metadata in OpenAI function calling format
"""
return {
"type": "function",
"function": {
"name": self.name,
"description": self.description,
"parameters": self.parameters,
},
}
# def get_schemas(self) -> Dict[str, List[ToolSchema]]:
# """Get all registered tool schemas.
# Returns:
# Dict mapping method names to their schema definitions
# """
# return self._schemas
def success_response(self, data: Union[Dict[str, Any], str]) -> ToolResult:
"""Create a successful tool result.
Args:
data: Result data (dictionary or string)
Returns:
ToolResult with success=True and formatted output
"""
if isinstance(data, str):
text = data
else:
text = json.dumps(data, indent=2)
logger.debug(f"Created success response for {self.__class__.__name__}")
return ToolResult(output=text)
def fail_response(self, msg: str) -> ToolResult:
"""Create a failed tool result.
Args:
msg: Error message describing the failure
Returns:
ToolResult with success=False and error message
"""
logger.debug(f"Tool {self.__class__.__name__} returned failed result: {msg}")
return ToolResult(error=msg)
class CLIResult(ToolResult):
"""A ToolResult that can be rendered as a CLI output."""
class ToolFailure(ToolResult):
"""A ToolResult that represents a failure."""