Spaces:
Paused
Paused
File size: 13,021 Bytes
70f6c0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import json
import threading
import tomllib
from pathlib import Path
from typing import Dict, List, Optional
from pydantic import BaseModel, Field
def get_project_root() -> Path:
"""Get the project root directory"""
return Path(__file__).resolve().parent.parent
PROJECT_ROOT = get_project_root()
WORKSPACE_ROOT = PROJECT_ROOT / "workspace"
class LLMSettings(BaseModel):
model: str = Field(..., description="Model name")
base_url: str = Field(..., description="API base URL")
api_key: str = Field(..., description="API key")
max_tokens: int = Field(4096, description="Maximum number of tokens per request")
max_input_tokens: Optional[int] = Field(
None,
description="Maximum input tokens to use across all requests (None for unlimited)",
)
temperature: float = Field(1.0, description="Sampling temperature")
api_type: str = Field(..., description="Azure, Openai, or Ollama")
api_version: str = Field(..., description="Azure Openai version if AzureOpenai")
class ProxySettings(BaseModel):
server: str = Field(None, description="Proxy server address")
username: Optional[str] = Field(None, description="Proxy username")
password: Optional[str] = Field(None, description="Proxy password")
class SearchSettings(BaseModel):
engine: str = Field(default="Google", description="Search engine the llm to use")
fallback_engines: List[str] = Field(
default_factory=lambda: ["DuckDuckGo", "Baidu", "Bing"],
description="Fallback search engines to try if the primary engine fails",
)
retry_delay: int = Field(
default=60,
description="Seconds to wait before retrying all engines again after they all fail",
)
max_retries: int = Field(
default=3,
description="Maximum number of times to retry all engines when all fail",
)
lang: str = Field(
default="en",
description="Language code for search results (e.g., en, zh, fr)",
)
country: str = Field(
default="us",
description="Country code for search results (e.g., us, cn, uk)",
)
class RunflowSettings(BaseModel):
use_data_analysis_agent: bool = Field(
default=False, description="Enable data analysis agent in run flow"
)
class BrowserSettings(BaseModel):
headless: bool = Field(False, description="Whether to run browser in headless mode")
disable_security: bool = Field(
True, description="Disable browser security features"
)
extra_chromium_args: List[str] = Field(
default_factory=list, description="Extra arguments to pass to the browser"
)
chrome_instance_path: Optional[str] = Field(
None, description="Path to a Chrome instance to use"
)
wss_url: Optional[str] = Field(
None, description="Connect to a browser instance via WebSocket"
)
cdp_url: Optional[str] = Field(
None, description="Connect to a browser instance via CDP"
)
proxy: Optional[ProxySettings] = Field(
None, description="Proxy settings for the browser"
)
max_content_length: int = Field(
2000, description="Maximum length for content retrieval operations"
)
class SandboxSettings(BaseModel):
"""Configuration for the execution sandbox"""
use_sandbox: bool = Field(False, description="Whether to use the sandbox")
image: str = Field("python:3.12-slim", description="Base image")
work_dir: str = Field("/workspace", description="Container working directory")
memory_limit: str = Field("512m", description="Memory limit")
cpu_limit: float = Field(1.0, description="CPU limit")
timeout: int = Field(300, description="Default command timeout (seconds)")
network_enabled: bool = Field(
False, description="Whether network access is allowed"
)
class DaytonaSettings(BaseModel):
daytona_api_key: str
daytona_server_url: Optional[str] = Field(
"https://app.daytona.io/api", description=""
)
daytona_target: Optional[str] = Field("us", description="enum ['eu', 'us']")
sandbox_image_name: Optional[str] = Field("whitezxj/sandbox:0.1.0", description="")
sandbox_entrypoint: Optional[str] = Field(
"/usr/bin/supervisord -n -c /etc/supervisor/conf.d/supervisord.conf",
description="",
)
# sandbox_id: Optional[str] = Field(
# None, description="ID of the daytona sandbox to use, if any"
# )
VNC_password: Optional[str] = Field(
"123456", description="VNC password for the vnc service in sandbox"
)
class MCPServerConfig(BaseModel):
"""Configuration for a single MCP server"""
type: str = Field(..., description="Server connection type (sse or stdio)")
url: Optional[str] = Field(None, description="Server URL for SSE connections")
command: Optional[str] = Field(None, description="Command for stdio connections")
args: List[str] = Field(
default_factory=list, description="Arguments for stdio command"
)
class MCPSettings(BaseModel):
"""Configuration for MCP (Model Context Protocol)"""
server_reference: str = Field(
"app.mcp.server", description="Module reference for the MCP server"
)
servers: Dict[str, MCPServerConfig] = Field(
default_factory=dict, description="MCP server configurations"
)
@classmethod
def load_server_config(cls) -> Dict[str, MCPServerConfig]:
"""Load MCP server configuration from JSON file"""
config_path = PROJECT_ROOT / "config" / "mcp.json"
try:
config_file = config_path if config_path.exists() else None
if not config_file:
return {}
with config_file.open() as f:
data = json.load(f)
servers = {}
for server_id, server_config in data.get("mcpServers", {}).items():
servers[server_id] = MCPServerConfig(
type=server_config["type"],
url=server_config.get("url"),
command=server_config.get("command"),
args=server_config.get("args", []),
)
return servers
except Exception as e:
raise ValueError(f"Failed to load MCP server config: {e}")
class AppConfig(BaseModel):
llm: Dict[str, LLMSettings]
sandbox: Optional[SandboxSettings] = Field(
None, description="Sandbox configuration"
)
browser_config: Optional[BrowserSettings] = Field(
None, description="Browser configuration"
)
search_config: Optional[SearchSettings] = Field(
None, description="Search configuration"
)
mcp_config: Optional[MCPSettings] = Field(None, description="MCP configuration")
run_flow_config: Optional[RunflowSettings] = Field(
None, description="Run flow configuration"
)
daytona_config: Optional[DaytonaSettings] = Field(
None, description="Daytona configuration"
)
class Config:
arbitrary_types_allowed = True
class Config:
_instance = None
_lock = threading.Lock()
_initialized = False
def __new__(cls):
if cls._instance is None:
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
if not self._initialized:
with self._lock:
if not self._initialized:
self._config = None
self._load_initial_config()
self._initialized = True
@staticmethod
def _get_config_path() -> Path:
root = PROJECT_ROOT
config_path = root / "config" / "config.toml"
if config_path.exists():
return config_path
example_path = root / "config" / "config.example.toml"
if example_path.exists():
return example_path
raise FileNotFoundError("No configuration file found in config directory")
def _load_config(self) -> dict:
config_path = self._get_config_path()
with config_path.open("rb") as f:
return tomllib.load(f)
def _load_initial_config(self):
raw_config = self._load_config()
base_llm = raw_config.get("llm", {})
llm_overrides = {
k: v for k, v in raw_config.get("llm", {}).items() if isinstance(v, dict)
}
default_settings = {
"model": base_llm.get("model"),
"base_url": base_llm.get("base_url"),
"api_key": base_llm.get("api_key"),
"max_tokens": base_llm.get("max_tokens", 4096),
"max_input_tokens": base_llm.get("max_input_tokens"),
"temperature": base_llm.get("temperature", 1.0),
"api_type": base_llm.get("api_type", ""),
"api_version": base_llm.get("api_version", ""),
}
# handle browser config.
browser_config = raw_config.get("browser", {})
browser_settings = None
if browser_config:
# handle proxy settings.
proxy_config = browser_config.get("proxy", {})
proxy_settings = None
if proxy_config and proxy_config.get("server"):
proxy_settings = ProxySettings(
**{
k: v
for k, v in proxy_config.items()
if k in ["server", "username", "password"] and v
}
)
# filter valid browser config parameters.
valid_browser_params = {
k: v
for k, v in browser_config.items()
if k in BrowserSettings.__annotations__ and v is not None
}
# if there is proxy settings, add it to the parameters.
if proxy_settings:
valid_browser_params["proxy"] = proxy_settings
# only create BrowserSettings when there are valid parameters.
if valid_browser_params:
browser_settings = BrowserSettings(**valid_browser_params)
search_config = raw_config.get("search", {})
search_settings = None
if search_config:
search_settings = SearchSettings(**search_config)
sandbox_config = raw_config.get("sandbox", {})
if sandbox_config:
sandbox_settings = SandboxSettings(**sandbox_config)
else:
sandbox_settings = SandboxSettings()
daytona_config = raw_config.get("daytona", {})
if daytona_config:
daytona_settings = DaytonaSettings(**daytona_config)
else:
daytona_settings = DaytonaSettings()
mcp_config = raw_config.get("mcp", {})
mcp_settings = None
if mcp_config:
# Load server configurations from JSON
mcp_config["servers"] = MCPSettings.load_server_config()
mcp_settings = MCPSettings(**mcp_config)
else:
mcp_settings = MCPSettings(servers=MCPSettings.load_server_config())
run_flow_config = raw_config.get("runflow")
if run_flow_config:
run_flow_settings = RunflowSettings(**run_flow_config)
else:
run_flow_settings = RunflowSettings()
config_dict = {
"llm": {
"default": default_settings,
**{
name: {**default_settings, **override_config}
for name, override_config in llm_overrides.items()
},
},
"sandbox": sandbox_settings,
"browser_config": browser_settings,
"search_config": search_settings,
"mcp_config": mcp_settings,
"run_flow_config": run_flow_settings,
"daytona_config": daytona_settings,
}
self._config = AppConfig(**config_dict)
@property
def llm(self) -> Dict[str, LLMSettings]:
return self._config.llm
@property
def sandbox(self) -> SandboxSettings:
return self._config.sandbox
@property
def daytona(self) -> DaytonaSettings:
return self._config.daytona_config
@property
def browser_config(self) -> Optional[BrowserSettings]:
return self._config.browser_config
@property
def search_config(self) -> Optional[SearchSettings]:
return self._config.search_config
@property
def mcp_config(self) -> MCPSettings:
"""Get the MCP configuration"""
return self._config.mcp_config
@property
def run_flow_config(self) -> RunflowSettings:
"""Get the Run Flow configuration"""
return self._config.run_flow_config
@property
def workspace_root(self) -> Path:
"""Get the workspace root directory"""
return WORKSPACE_ROOT
@property
def root_path(self) -> Path:
"""Get the root path of the application"""
return PROJECT_ROOT
config = Config()
|