Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,11 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
-
from transformers import pipeline
|
| 4 |
import torch
|
| 5 |
from typing import List, Dict, Optional
|
| 6 |
|
| 7 |
# Global variable to store pipelines
|
| 8 |
model_cache = {}
|
|
|
|
| 9 |
|
| 10 |
# Available models (only Daedalus)
|
| 11 |
AVAILABLE_MODELS = {
|
|
@@ -14,7 +15,7 @@ AVAILABLE_MODELS = {
|
|
| 14 |
|
| 15 |
@spaces.GPU
|
| 16 |
def initialize_model(model_name):
|
| 17 |
-
global model_cache
|
| 18 |
|
| 19 |
if model_name not in AVAILABLE_MODELS:
|
| 20 |
raise ValueError(f"Model {model_name} not found in available models")
|
|
@@ -24,31 +25,80 @@ def initialize_model(model_name):
|
|
| 24 |
# Check if model is already cached
|
| 25 |
if model_id not in model_cache:
|
| 26 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
model_cache[model_id] = pipeline(
|
| 28 |
"text-generation",
|
| 29 |
model=model_id,
|
|
|
|
| 30 |
torch_dtype=torch.float16,
|
| 31 |
device_map="auto",
|
| 32 |
trust_remote_code=True
|
| 33 |
)
|
| 34 |
except Exception:
|
| 35 |
# Fallback to CPU if GPU fails
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
model_cache[model_id] = pipeline(
|
| 37 |
"text-generation",
|
| 38 |
model=model_id,
|
|
|
|
| 39 |
torch_dtype=torch.float32,
|
| 40 |
device_map="cpu",
|
| 41 |
trust_remote_code=True
|
| 42 |
)
|
| 43 |
|
| 44 |
-
return model_cache[model_id]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
@spaces.GPU
|
| 47 |
def generate_response(message, history, model_name, max_length=512, temperature=0.7, top_p=0.9):
|
| 48 |
"""Generate response using the selected model"""
|
| 49 |
|
| 50 |
try:
|
| 51 |
-
model_pipe = initialize_model(model_name)
|
| 52 |
except Exception as e:
|
| 53 |
return f"Error loading model {model_name}: {str(e)}"
|
| 54 |
|
|
@@ -62,48 +112,65 @@ def generate_response(message, history, model_name, max_length=512, temperature=
|
|
| 62 |
messages.append({"role": "user", "content": message})
|
| 63 |
|
| 64 |
try:
|
|
|
|
| 65 |
try:
|
|
|
|
|
|
|
|
|
|
| 66 |
response = model_pipe(
|
| 67 |
-
|
| 68 |
-
|
| 69 |
temperature=temperature,
|
| 70 |
top_p=top_p,
|
| 71 |
do_sample=True,
|
| 72 |
-
pad_token_id=
|
|
|
|
| 73 |
return_full_text=False
|
| 74 |
)
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
for msg in messages:
|
| 78 |
if msg["role"] == "user":
|
| 79 |
-
conversation_text += f"
|
| 80 |
else:
|
| 81 |
-
conversation_text += f"
|
| 82 |
-
conversation_text += "
|
| 83 |
|
| 84 |
response = model_pipe(
|
| 85 |
conversation_text,
|
| 86 |
-
|
| 87 |
temperature=temperature,
|
| 88 |
top_p=top_p,
|
| 89 |
do_sample=True,
|
| 90 |
-
pad_token_id=
|
| 91 |
return_full_text=False
|
| 92 |
)
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
if isinstance(generated_text, list):
|
| 100 |
-
assistant_response = generated_text[-1]['content']
|
| 101 |
-
else:
|
| 102 |
assistant_response = str(generated_text).strip()
|
| 103 |
-
|
| 104 |
-
assistant_response = assistant_response.split("Assistant:")[-1].strip()
|
| 105 |
-
|
| 106 |
-
return assistant_response
|
| 107 |
|
| 108 |
except Exception as e:
|
| 109 |
return f"Error generating response: {str(e)}"
|
|
@@ -141,8 +208,8 @@ def create_interface():
|
|
| 141 |
maximum=8192,
|
| 142 |
value=2048,
|
| 143 |
step=50,
|
| 144 |
-
label="Max
|
| 145 |
-
info="Maximum
|
| 146 |
)
|
| 147 |
temperature = gr.Slider(
|
| 148 |
minimum=0.1,
|
|
@@ -207,4 +274,4 @@ def create_interface():
|
|
| 207 |
# Launch the app
|
| 208 |
if __name__ == "__main__":
|
| 209 |
demo = create_interface()
|
| 210 |
-
demo.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
+
from transformers import pipeline, AutoTokenizer
|
| 4 |
import torch
|
| 5 |
from typing import List, Dict, Optional
|
| 6 |
|
| 7 |
# Global variable to store pipelines
|
| 8 |
model_cache = {}
|
| 9 |
+
tokenizer_cache = {}
|
| 10 |
|
| 11 |
# Available models (only Daedalus)
|
| 12 |
AVAILABLE_MODELS = {
|
|
|
|
| 15 |
|
| 16 |
@spaces.GPU
|
| 17 |
def initialize_model(model_name):
|
| 18 |
+
global model_cache, tokenizer_cache
|
| 19 |
|
| 20 |
if model_name not in AVAILABLE_MODELS:
|
| 21 |
raise ValueError(f"Model {model_name} not found in available models")
|
|
|
|
| 25 |
# Check if model is already cached
|
| 26 |
if model_id not in model_cache:
|
| 27 |
try:
|
| 28 |
+
# Load tokenizer separately to handle chat template properly
|
| 29 |
+
tokenizer_cache[model_id] = AutoTokenizer.from_pretrained(
|
| 30 |
+
model_id,
|
| 31 |
+
trust_remote_code=True
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
model_cache[model_id] = pipeline(
|
| 35 |
"text-generation",
|
| 36 |
model=model_id,
|
| 37 |
+
tokenizer=tokenizer_cache[model_id],
|
| 38 |
torch_dtype=torch.float16,
|
| 39 |
device_map="auto",
|
| 40 |
trust_remote_code=True
|
| 41 |
)
|
| 42 |
except Exception:
|
| 43 |
# Fallback to CPU if GPU fails
|
| 44 |
+
tokenizer_cache[model_id] = AutoTokenizer.from_pretrained(
|
| 45 |
+
model_id,
|
| 46 |
+
trust_remote_code=True
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
model_cache[model_id] = pipeline(
|
| 50 |
"text-generation",
|
| 51 |
model=model_id,
|
| 52 |
+
tokenizer=tokenizer_cache[model_id],
|
| 53 |
torch_dtype=torch.float32,
|
| 54 |
device_map="cpu",
|
| 55 |
trust_remote_code=True
|
| 56 |
)
|
| 57 |
|
| 58 |
+
return model_cache[model_id], tokenizer_cache[model_id]
|
| 59 |
+
|
| 60 |
+
def format_conversation_with_template(messages: List[Dict], tokenizer) -> str:
|
| 61 |
+
"""Manually apply the chat template to ensure proper formatting"""
|
| 62 |
+
|
| 63 |
+
# Get the chat template
|
| 64 |
+
if hasattr(tokenizer, 'chat_template') and tokenizer.chat_template:
|
| 65 |
+
try:
|
| 66 |
+
# Use the tokenizer's apply_chat_template method
|
| 67 |
+
formatted = tokenizer.apply_chat_template(
|
| 68 |
+
messages,
|
| 69 |
+
tokenize=False,
|
| 70 |
+
add_generation_prompt=True
|
| 71 |
+
)
|
| 72 |
+
return formatted
|
| 73 |
+
except Exception as e:
|
| 74 |
+
print(f"Chat template application failed: {e}")
|
| 75 |
+
# Fall back to manual formatting
|
| 76 |
+
pass
|
| 77 |
+
|
| 78 |
+
# Manual fallback formatting based on your template
|
| 79 |
+
bos_token = tokenizer.bos_token if tokenizer.bos_token else "<s>"
|
| 80 |
+
eos_token = tokenizer.eos_token if tokenizer.eos_token else "</s>"
|
| 81 |
+
|
| 82 |
+
# Start with system message
|
| 83 |
+
formatted = f"{bos_token}system\nYou are an AI Coding model called Daedalus, developed by Noema Research{eos_token}"
|
| 84 |
+
|
| 85 |
+
# Add each message
|
| 86 |
+
for msg in messages:
|
| 87 |
+
role = msg.get('role', 'user')
|
| 88 |
+
content = msg.get('content', '').strip()
|
| 89 |
+
formatted += f"{bos_token}{role}\n{content}{eos_token}"
|
| 90 |
+
|
| 91 |
+
# Add generation prompt
|
| 92 |
+
formatted += f"{bos_token}assistant\n"
|
| 93 |
+
|
| 94 |
+
return formatted
|
| 95 |
|
| 96 |
@spaces.GPU
|
| 97 |
def generate_response(message, history, model_name, max_length=512, temperature=0.7, top_p=0.9):
|
| 98 |
"""Generate response using the selected model"""
|
| 99 |
|
| 100 |
try:
|
| 101 |
+
model_pipe, tokenizer = initialize_model(model_name)
|
| 102 |
except Exception as e:
|
| 103 |
return f"Error loading model {model_name}: {str(e)}"
|
| 104 |
|
|
|
|
| 112 |
messages.append({"role": "user", "content": message})
|
| 113 |
|
| 114 |
try:
|
| 115 |
+
# Method 1: Try using the pipeline with proper chat template
|
| 116 |
try:
|
| 117 |
+
# Format the conversation using the chat template
|
| 118 |
+
formatted_prompt = format_conversation_with_template(messages, tokenizer)
|
| 119 |
+
|
| 120 |
response = model_pipe(
|
| 121 |
+
formatted_prompt,
|
| 122 |
+
max_new_tokens=max_length,
|
| 123 |
temperature=temperature,
|
| 124 |
top_p=top_p,
|
| 125 |
do_sample=True,
|
| 126 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 127 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 128 |
return_full_text=False
|
| 129 |
)
|
| 130 |
+
|
| 131 |
+
if isinstance(response, list) and len(response) > 0:
|
| 132 |
+
generated_text = response[0]['generated_text']
|
| 133 |
+
else:
|
| 134 |
+
generated_text = str(response)
|
| 135 |
+
|
| 136 |
+
# Clean up the response
|
| 137 |
+
assistant_response = str(generated_text).strip()
|
| 138 |
+
|
| 139 |
+
# Remove any residual formatting artifacts
|
| 140 |
+
if assistant_response.startswith("assistant\n"):
|
| 141 |
+
assistant_response = assistant_response[10:].strip()
|
| 142 |
+
|
| 143 |
+
return assistant_response
|
| 144 |
+
|
| 145 |
+
except Exception as template_error:
|
| 146 |
+
print(f"Chat template method failed: {template_error}")
|
| 147 |
+
|
| 148 |
+
# Method 2: Fallback to simple string formatting
|
| 149 |
+
conversation_text = "system\nYou are an AI Coding model called Daedalus, developed by Noema Research\n\n"
|
| 150 |
for msg in messages:
|
| 151 |
if msg["role"] == "user":
|
| 152 |
+
conversation_text += f"user\n{msg['content']}\n\n"
|
| 153 |
else:
|
| 154 |
+
conversation_text += f"assistant\n{msg['content']}\n\n"
|
| 155 |
+
conversation_text += "assistant\n"
|
| 156 |
|
| 157 |
response = model_pipe(
|
| 158 |
conversation_text,
|
| 159 |
+
max_new_tokens=max_length,
|
| 160 |
temperature=temperature,
|
| 161 |
top_p=top_p,
|
| 162 |
do_sample=True,
|
| 163 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 164 |
return_full_text=False
|
| 165 |
)
|
| 166 |
+
|
| 167 |
+
if isinstance(response, list) and len(response) > 0:
|
| 168 |
+
generated_text = response[0]['generated_text']
|
| 169 |
+
else:
|
| 170 |
+
generated_text = str(response)
|
| 171 |
+
|
|
|
|
|
|
|
|
|
|
| 172 |
assistant_response = str(generated_text).strip()
|
| 173 |
+
return assistant_response
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
except Exception as e:
|
| 176 |
return f"Error generating response: {str(e)}"
|
|
|
|
| 208 |
maximum=8192,
|
| 209 |
value=2048,
|
| 210 |
step=50,
|
| 211 |
+
label="Max New Tokens",
|
| 212 |
+
info="Maximum number of new tokens to generate"
|
| 213 |
)
|
| 214 |
temperature = gr.Slider(
|
| 215 |
minimum=0.1,
|
|
|
|
| 274 |
# Launch the app
|
| 275 |
if __name__ == "__main__":
|
| 276 |
demo = create_interface()
|
| 277 |
+
demo.launch(share=True)
|