""" ATAR Prediction System with ML Ensemble All-in-one Gradio app with training, inference, and HF Model Repo integration Optimized for ZeroGPU (no persistent storage needed) Author: Victor Academy """ import gradio as gr import numpy as np import pandas as pd import json import os from typing import List, Dict, Any, Tuple import warnings warnings.filterwarnings('ignore') # ZeroGPU support for Hugging Face Spaces try: import spaces ZEROGPU_AVAILABLE = True print("✅ ZeroGPU support enabled") except ImportError: ZEROGPU_AVAILABLE = False print("ℹ️ Running without ZeroGPU (local mode)") # ML Libraries try: from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split import joblib except ImportError: print("⚠️ Installing scikit-learn...") os.system("pip install scikit-learn joblib") from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor from sklearn.linear_model import Ridge from sklearn.preprocessing import StandardScaler from sklearn.model_test_split import train_test_split import joblib # Hugging Face Hub for model storage try: from huggingface_hub import HfApi, login, hf_hub_download except ImportError: print("⚠️ Installing huggingface_hub...") os.system("pip install huggingface_hub") from huggingface_hub import HfApi, login, hf_hub_download # ============================================ # CONFIGURATION # ============================================ HF_MODEL_REPO = "Spestly/VAML-ATAR" # Your HF model repo FEATURE_COUNT = 18 MODEL_VERSION = "v1.0.0" # Semantic versioning: major.minor.patch # HF Token - REQUIRED for training (set as environment variable in HF Space settings) # Get from: https://huggingface.co/settings/tokens (write access needed) # In HF Space: Settings → Variables and secrets → Add: HF_TOKEN = hf_xxxxx HF_TOKEN = os.environ.get('HF_TOKEN', None) if not HF_TOKEN: print("⚠️ Warning: HF_TOKEN not set! Training will fail.") print(" Set HF_TOKEN environment variable in Space settings.") else: print("✅ HF_TOKEN found") # Subject scaling data (2024 HSC data) SUBJECT_SCALING_DATA = { 'Mathematics Extension 2': {'scaling_factor': 1.1943, 'mean': 71.2, 'std': 12.5, 'difficulty': 'very_hard'}, 'Mathematics Extension 1': {'scaling_factor': 1.1547, 'mean': 69.8, 'std': 13.1, 'difficulty': 'hard'}, 'Mathematics Advanced': {'scaling_factor': 1.0821, 'mean': 72.5, 'std': 11.8, 'difficulty': 'medium'}, 'Physics': {'scaling_factor': 1.1037, 'mean': 70.3, 'std': 12.2, 'difficulty': 'hard'}, 'Chemistry': {'scaling_factor': 1.0956, 'mean': 71.1, 'std': 11.9, 'difficulty': 'hard'}, 'Biology': {'scaling_factor': 1.0234, 'mean': 73.8, 'std': 10.5, 'difficulty': 'medium'}, 'English Advanced': {'scaling_factor': 1.0000, 'mean': 75.2, 'std': 9.8, 'difficulty': 'medium'}, 'English Standard': {'scaling_factor': 0.9234, 'mean': 68.5, 'std': 11.2, 'difficulty': 'easy'}, 'Economics': {'scaling_factor': 1.0645, 'mean': 72.8, 'std': 11.3, 'difficulty': 'medium'}, 'Business Studies': {'scaling_factor': 0.9856, 'mean': 71.2, 'std': 10.8, 'difficulty': 'medium'}, 'Legal Studies': {'scaling_factor': 0.9923, 'mean': 72.5, 'std': 10.2, 'difficulty': 'medium'}, 'Modern History': {'scaling_factor': 1.0112, 'mean': 73.1, 'std': 10.6, 'difficulty': 'medium'}, 'Ancient History': {'scaling_factor': 1.0089, 'mean': 72.9, 'std': 10.4, 'difficulty': 'medium'}, 'PDHPE': {'scaling_factor': 0.9639, 'mean': 70.8, 'std': 11.5, 'difficulty': 'easy'}, 'Software Design & Development': {'scaling_factor': 1.0423, 'mean': 71.6, 'std': 12.1, 'difficulty': 'medium'}, 'Visual Arts': {'scaling_factor': 0.9734, 'mean': 76.2, 'std': 8.9, 'difficulty': 'easy'}, 'Music 2': {'scaling_factor': 1.0567, 'mean': 77.5, 'std': 9.2, 'difficulty': 'medium'}, 'Geography': {'scaling_factor': 0.9912, 'mean': 72.3, 'std': 10.7, 'difficulty': 'medium'}, 'Industrial Technology': {'scaling_factor': 0.9523, 'mean': 69.7, 'std': 11.8, 'difficulty': 'easy'}, } # ============================================ # FEATURE ENGINEERING # ============================================ def extract_features(subjects: List[Dict]) -> np.ndarray: """ Extract 18 features from subject data Features: - 10 subject marks (padded with 0 if fewer subjects) - Average mark - Standard deviation - High-scaling subject count - Overall trend score - Assessment count score - Top mark quality - Bottom mark quality - Has good English flag """ # Get top 10 subjects by mark sorted_subjects = sorted(subjects, key=lambda x: x.get('raw_mark', 0), reverse=True)[:10] # Extract marks marks = [s.get('raw_mark', 0) for s in sorted_subjects] while len(marks) < 10: marks.append(0) # Normalize to 0-1 marks_normalized = [m / 100.0 for m in marks[:10]] # Calculate derived features valid_marks = [m for m in marks if m > 0] avg_mark = np.mean(valid_marks) if valid_marks else 0 std_dev = np.std(valid_marks) if len(valid_marks) > 1 else 0 # Count high-scaling subjects (factor > 1.05) high_scaling_count = sum(1 for s in sorted_subjects if SUBJECT_SCALING_DATA.get(s.get('subject_name', ''), {}).get('scaling_factor', 1.0) > 1.05) # Trend score (0-1) trend_map = {'improving': 1.0, 'stable': 0.5, 'declining': 0.0} trends = [trend_map.get(s.get('trend', 'stable'), 0.5) for s in sorted_subjects] trend_score = np.mean(trends) if trends else 0.5 # Assessment count score (normalized) assessment_counts = [s.get('assessment_count', 1) for s in sorted_subjects] assessment_score = min(np.mean(assessment_counts) / 10.0, 1.0) # Quality metrics top_mark_quality = marks[0] / 90.0 if marks[0] > 0 else 0 bottom_mark_quality = marks[-1] / 90.0 if marks[-1] > 0 else 0 # English quality flag english_subjects = [s for s in sorted_subjects if 'English' in s.get('subject_name', '')] has_good_english = 1.0 if english_subjects and english_subjects[0].get('raw_mark', 0) >= 80 else 0.0 # Combine features features = marks_normalized + [ avg_mark / 100.0, min(std_dev / 20.0, 1.0), high_scaling_count / 10.0, trend_score, assessment_score, top_mark_quality, bottom_mark_quality, has_good_english ] return np.array(features, dtype=np.float32) # ============================================ # DATA GENERATION (for training) # ============================================ def generate_synthetic_data(n_samples: int = 10000) -> Tuple[np.ndarray, np.ndarray]: """ Generate synthetic ATAR training data using UAC formula """ np.random.seed(42) X = [] y = [] for _ in range(n_samples): # Generate 10 subject marks subject_marks = np.random.normal(73, 10, 10) subject_marks = np.clip(subject_marks, 40, 100) subject_marks = np.sort(subject_marks)[::-1] # Sort descending # Derived features avg_mark = np.mean(subject_marks) std_dev = np.std(subject_marks) high_scaling_count = np.random.randint(0, 6) trend_score = np.random.uniform(0, 1) assessment_count = np.random.uniform(0, 1) top_mark_quality = min(subject_marks[0] / 90, 1) bottom_mark_quality = min(subject_marks[-1] / 90, 1) has_good_english = 1 if subject_marks[0] >= 80 else 0 # Calculate ATAR using UAC formula # Aggregate scaled marks (simplified) aggregate = sum([m * 2 / 50.0 for m in subject_marks]) # Base ATAR calculation base_atar = 99.95 * (aggregate / 500) ** 0.85 # Adjustments atar = base_atar + (high_scaling_count - 2.5) * 0.5 atar += (trend_score - 0.5) * 2 atar += np.random.normal(0, 0.5) # Add noise atar = np.clip(atar, 30, 99.95) # Features (normalized) features = list(subject_marks / 100) + [ avg_mark / 100, min(std_dev / 20, 1), high_scaling_count / 10, trend_score, assessment_count, top_mark_quality, bottom_mark_quality, has_good_english ] X.append(features) y.append(atar) return np.array(X), np.array(y) # ============================================ # MODEL TRAINING # ============================================ class ATARMLEnsemble: """ ML Ensemble for ATAR prediction Uses Gradient Boosting + Random Forest + Ridge Regression """ def __init__(self): self.scaler = StandardScaler() self.models = { 'gb': GradientBoostingRegressor(n_estimators=200, max_depth=5, learning_rate=0.1, random_state=42), 'rf': RandomForestRegressor(n_estimators=200, max_depth=10, random_state=42), 'ridge': Ridge(alpha=1.0, random_state=42) } self.weights = {'gb': 0.5, 'rf': 0.3, 'ridge': 0.2} # Ensemble weights self.is_trained = False def train(self, X, y, X_test=None, y_test=None): """Train all models in the ensemble""" print(f"🚀 Training on {len(X)} samples...") # Scale features X_scaled = self.scaler.fit_transform(X) # Train each model for name, model in self.models.items(): print(f"Training {name}...") model.fit(X_scaled, y) self.is_trained = True self.training_samples = len(X) # Store metrics for versioning train_pred = self.predict(X) self.train_mae = np.mean(np.abs(train_pred - y)) if X_test is not None and y_test is not None: test_pred = self.predict(X_test) self.test_mae = np.mean(np.abs(test_pred - y_test)) else: self.test_mae = None print("✅ Ensemble training complete!") def predict(self, X): """Predict using weighted ensemble""" if not self.is_trained: raise ValueError("Model not trained! Train first or load from HF.") X_scaled = self.scaler.transform(X) # Get predictions from each model predictions = {} for name, model in self.models.items(): predictions[name] = model.predict(X_scaled) # Weighted average final_pred = sum(predictions[name] * self.weights[name] for name in self.models.keys()) return final_pred def save_local(self, path='models'): """Save models locally""" os.makedirs(path, exist_ok=True) joblib.dump(self.scaler, f'{path}/scaler.pkl') for name, model in self.models.items(): joblib.dump(model, f'{path}/{name}.pkl') joblib.dump(self.weights, f'{path}/weights.pkl') print(f"✅ Models saved to {path}/") def load_local(self, path='models'): """Load models from local path""" self.scaler = joblib.load(f'{path}/scaler.pkl') for name in self.models.keys(): self.models[name] = joblib.load(f'{path}/{name}.pkl') self.weights = joblib.load(f'{path}/weights.pkl') self.is_trained = True print(f"✅ Models loaded from {path}/") # Global model instance ensemble = ATARMLEnsemble() # ============================================ # HUGGING FACE INTEGRATION # ============================================ def upload_to_hf(version: str = None, repo_name: str = HF_MODEL_REPO): """ Upload trained models to HF Model Repo with versioning Versioning strategy: - models/{version}/ → Specific version (e.g., models/v1.0.0/) - models/latest/ → Always points to newest version - metadata.json → Tracks all versions and metrics """ try: # Check if HF_TOKEN is set if not HF_TOKEN: return "❌ HF_TOKEN not set! Please set it as environment variable in Space settings." # Login to HF login(token=HF_TOKEN) api = HfApi() # Use provided version or generate from timestamp if version is None: from datetime import datetime version = datetime.now().strftime("v%Y%m%d_%H%M%S") # Create repo if doesn't exist try: api.create_repo(repo_id=repo_name, repo_type="model", private=False) print(f"✅ Created repo: {repo_name}") except: print(f"ℹ️ Repo {repo_name} already exists") # Upload model files to versioned folder files = ['scaler.pkl', 'gb.pkl', 'rf.pkl', 'ridge.pkl', 'weights.pkl'] print(f"📤 Uploading version: {version}") # Upload to specific version folder for file in files: api.upload_file( path_or_fileobj=f'models/{file}', path_in_repo=f'models/{version}/{file}', repo_id=repo_name, repo_type="model" ) # Also upload to 'latest' folder (for easy access) for file in files: api.upload_file( path_or_fileobj=f'models/{file}', path_in_repo=f'models/latest/{file}', repo_id=repo_name, repo_type="model" ) # Download existing metadata if it exists try: import tempfile temp_dir = tempfile.mkdtemp() metadata_path = hf_hub_download( repo_id=repo_name, filename="metadata.json", repo_type="model", cache_dir=temp_dir ) with open(metadata_path, 'r') as f: metadata = json.load(f) except: metadata = { "versions": [], "latest_version": None, "model_type": "ML Ensemble (Gradient Boosting + Random Forest + Ridge)", "feature_count": FEATURE_COUNT } # Add new version to metadata from datetime import datetime new_version_info = { "version": version, "timestamp": datetime.now().isoformat(), "training_samples": getattr(ensemble, 'training_samples', "unknown"), "train_mae": getattr(ensemble, 'train_mae', None), "test_mae": getattr(ensemble, 'test_mae', None), "model_files": files } metadata["versions"].append(new_version_info) metadata["latest_version"] = version metadata["total_versions"] = len(metadata["versions"]) # Save updated metadata locally with open('models/metadata.json', 'w') as f: json.dump(metadata, f, indent=2) # Upload metadata api.upload_file( path_or_fileobj='models/metadata.json', path_in_repo='metadata.json', repo_id=repo_name, repo_type="model" ) return f"""✅ Models uploaded successfully! 📦 Version: {version} 🔗 Repo: https://huggingface.co/{repo_name} 📊 Total versions: {len(metadata['versions'])} Access: - Latest: models/latest/ - This version: models/{version}/ - All versions: See metadata.json """ except Exception as e: return f"❌ Upload failed: {str(e)}" def download_from_hf(version: str = "latest", repo_name: str = HF_MODEL_REPO, token: str = None): """ Download models from HF Model Repo Args: version: Version to load ('latest', 'v1.0.0', etc.) repo_name: HF model repo name token: HF token (optional - only needed for private repos) """ try: os.makedirs('models', exist_ok=True) # Use provided token, or environment variable, or None (for public repos) auth_token = token or HF_TOKEN # Determine path based on version path_prefix = f"models/{version}/" files = ['scaler.pkl', 'gb.pkl', 'rf.pkl', 'ridge.pkl', 'weights.pkl'] print(f"📥 Downloading version: {version}") if auth_token: print("🔒 Using authentication (private repo)") else: print("🌐 No token - assuming public repo") for file in files: local_path = hf_hub_download( repo_id=repo_name, filename=f"{path_prefix}{file}", repo_type="model", cache_dir='models', token=auth_token # ← Added token support ) # Copy to models/ directory import shutil shutil.copy(local_path, f'models/{file}') # Load into ensemble ensemble.load_local('models') # Try to get version info from metadata try: metadata_path = hf_hub_download( repo_id=repo_name, filename="metadata.json", repo_type="model", cache_dir='models', token=auth_token # ← Added token support ) with open(metadata_path, 'r') as f: metadata = json.load(f) version_info = next((v for v in metadata["versions"] if v["version"] == version), None) info_str = f"""✅ Models loaded successfully! 📦 Version: {version} 📅 Trained: {version_info.get('timestamp', 'Unknown') if version_info else 'Unknown'} 📊 Train MAE: {version_info.get('train_mae', 'N/A') if version_info else 'N/A'} ATAR points 📊 Test MAE: {version_info.get('test_mae', 'N/A') if version_info else 'N/A'} ATAR points 🔗 Repo: https://huggingface.co/{repo_name} """ return info_str except: return f"✅ Models loaded from https://huggingface.co/{repo_name} ({version})" except Exception as e: return f"❌ Download failed: {str(e)}\nTrain the model first or check version name!" # ============================================ # PREDICTION LOGIC # ============================================ def predict_atar(subjects: List[Dict]) -> Dict[str, Any]: """ Predict ATAR using ML ensemble Auto-loads model from HF if not loaded """ # Auto-load model if not trained if not ensemble.is_trained: result = download_from_hf() if "❌" in result: return { 'error': 'Model not trained or available. Please train first!', 'predicted_atar': 0, 'confidence': 0 } # Extract features features = extract_features(subjects) X = features.reshape(1, -1) # Predict predicted_atar = ensemble.predict(X)[0] predicted_atar = np.clip(predicted_atar, 30, 99.95) # Calculate confidence (based on data quality) confidence = calculate_confidence(subjects) # Generate insights insights = generate_insights(subjects, predicted_atar) recommendations = generate_recommendations(subjects, predicted_atar) return { 'predicted_atar': round(predicted_atar, 2), 'confidence': round(confidence, 2), 'insights': insights, 'recommendations': recommendations } def calculate_confidence(subjects: List[Dict]) -> float: """Calculate prediction confidence based on data quality""" if not subjects: return 0.0 # Factors affecting confidence assessment_completeness = min(sum(s.get('assessment_count', 0) for s in subjects) / (len(subjects) * 5), 1.0) subject_count_factor = min(len(subjects) / 10, 1.0) has_trends = sum(1 for s in subjects if 'trend' in s) / len(subjects) confidence = 0.4 * assessment_completeness + 0.3 * subject_count_factor + 0.3 * has_trends return confidence def generate_insights(subjects: List[Dict], predicted_atar: float) -> List[str]: """Generate insights based on subject performance""" insights = [] # Performance level if predicted_atar >= 95: insights.append("🎯 Excellent performance! You're on track for elite universities.") elif predicted_atar >= 85: insights.append("📈 Strong performance! Many competitive courses within reach.") elif predicted_atar >= 75: insights.append("✅ Solid foundation! Focus on improvement areas for better outcomes.") else: insights.append("💪 Room for growth! Strategic improvement can boost your ATAR significantly.") # Subject mix analysis high_scaling = [s for s in subjects if SUBJECT_SCALING_DATA.get(s.get('subject_name', ''), {}).get('scaling_factor', 1.0) > 1.05] if len(high_scaling) >= 3: insights.append(f"⭐ Your {len(high_scaling)} high-scaling subjects will boost your ATAR!") return insights def generate_recommendations(subjects: List[Dict], predicted_atar: float) -> List[str]: """Generate improvement recommendations""" recommendations = [] # Find weakest subjects sorted_subjects = sorted(subjects, key=lambda x: x.get('raw_mark', 0)) if sorted_subjects: weakest = sorted_subjects[0] recommendations.append(f"🎯 Focus on {weakest.get('subject_name', 'weakest subject')} - raising this by 5 marks could add ~1 ATAR point") # Suggest high-scaling subjects low_scaling = [s for s in subjects if SUBJECT_SCALING_DATA.get(s.get('subject_name', ''), {}).get('scaling_factor', 1.0) < 0.98] if low_scaling: recommendations.append(f"⚖️ Consider if {low_scaling[0].get('subject_name')} is in your best 10 units") return recommendations # ============================================ # GRADIO INTERFACE # ============================================ @spaces.GPU(duration=120) if ZEROGPU_AVAILABLE else lambda x: x def train_model_interface(n_samples: int, version: str = None): """Train model and upload to HF with versioning""" try: # Generate data yield "📊 Generating synthetic training data..." X, y = generate_synthetic_data(n_samples) # Split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train yield "🚀 Training ML ensemble (Gradient Boosting + Random Forest + Ridge)..." ensemble.train(X_train, y_train, X_test, y_test) # Evaluate train_pred = ensemble.predict(X_train) test_pred = ensemble.predict(X_test) train_mae = np.mean(np.abs(train_pred - y_train)) test_mae = np.mean(np.abs(test_pred - y_test)) yield f"✅ Training complete!\n\n📊 Results:\n- Train MAE: {train_mae:.2f} ATAR points\n- Test MAE: {test_mae:.2f} ATAR points\n- Training samples: {len(X_train):,}\n\n💾 Saving models locally..." # Save locally ensemble.save_local('models') # Upload to HF with versioning yield f"✅ Models saved!\n\n☁️ Uploading to Hugging Face with versioning..." # Auto-generate version if not provided if not version or version.strip() == "": from datetime import datetime version = datetime.now().strftime("v%Y%m%d_%H%M%S") result = upload_to_hf(version=version) yield f"✅ Training complete!\n\n📊 Results:\n- Train MAE: {train_mae:.2f} ATAR points\n- Test MAE: {test_mae:.2f} ATAR points\n- Training samples: {len(X_train):,}\n\n{result}\n\n🎉 Model ready for inference!" except Exception as e: yield f"❌ Training failed: {str(e)}" @spaces.GPU(duration=5) if ZEROGPU_AVAILABLE else lambda x: x def predict_interface(subjects_json: str): """Predict ATAR from JSON input""" try: subjects = json.loads(subjects_json) result = predict_atar(subjects) return json.dumps(result, indent=2) except Exception as e: return json.dumps({'error': str(e)}) # ============================================ # GRADIO APP # ============================================ with gr.Blocks(title="ATAR Prediction ML Ensemble", theme=gr.themes.Soft()) as app: gr.Markdown(""" # 🎓 ATAR Prediction System (ML Ensemble) **Powered by Gradient Boosting + Random Forest + Ridge Regression** ### Features: - 🚀 Train on ZeroGPU with automatic HF Model Repo upload - 🔮 Predict ATAR from subject marks (auto-loads model from HF) - ☁️ No persistent storage needed - models live in HF Model Repo """) with gr.Tabs(): # Tab 1: Training with gr.Tab("🏋️ Train Model"): gr.Markdown("### Train ML Ensemble & Upload to Hugging Face") with gr.Row(): n_samples_input = gr.Slider(1000, 50000, value=10000, step=1000, label="Training Samples") version_input = gr.Textbox( label="Version (optional - auto-generated if empty)", placeholder="v1.0.0 or leave empty for timestamp", value="" ) train_btn = gr.Button("🚀 Train & Upload to HF", variant="primary", size="lg") train_output = gr.Textbox(label="Training Progress", lines=12) train_btn.click( fn=train_model_interface, inputs=[n_samples_input, version_input], outputs=train_output ) gr.Markdown(""" **Instructions:** 1. Set `HF_TOKEN` environment variable in Space settings (write access) - Go to Space Settings → Variables and secrets - Add secret: `HF_TOKEN` = your token from https://huggingface.co/settings/tokens 2. (Optional) Specify version like `v1.0.0`, `v1.1.0`, etc. or leave empty for auto timestamp 3. Click "Train & Upload to HF" 4. Model will be uploaded to `victor-academy/atar-predictor-ensemble` 5. Each training creates a new version - no overwrites! **Versioning:** - `models/latest/` - Always the newest model - `models/v1.0.0/` - Specific version you can roll back to - `metadata.json` - Tracks all versions with metrics **ZeroGPU:** - Training uses GPU for 120 seconds (free tier) - Inference uses GPU for 5 seconds per request - All model storage handled via HF Model Repo """) # Tab 2: JSON API with gr.Tab("🔌 JSON API"): gr.Markdown("### Predict ATAR (JSON API)") with gr.Row(): load_version_input = gr.Textbox( label="Model Version to Load (optional)", placeholder="latest (default), v1.0.0, v20241007_143022, etc.", value="latest" ) load_btn = gr.Button("📥 Load Model", variant="secondary") load_status = gr.Textbox(label="Load Status", lines=3) def load_model_interface(version): return download_from_hf(version=version) load_btn.click( fn=load_model_interface, inputs=load_version_input, outputs=load_status ) gr.Markdown("---") subjects_input = gr.Code( label="Input: Subjects JSON", language="json", value=json.dumps([ {"subject_name": "Mathematics Extension 2", "raw_mark": 88.5, "trend": "improving", "assessment_count": 4}, {"subject_name": "Physics", "raw_mark": 85.0, "trend": "stable", "assessment_count": 5}, {"subject_name": "Chemistry", "raw_mark": 84.0, "trend": "stable", "assessment_count": 5}, {"subject_name": "English Advanced", "raw_mark": 82.0, "trend": "improving", "assessment_count": 4}, {"subject_name": "Software Design & Development", "raw_mark": 86.0, "trend": "improving", "assessment_count": 3} ], indent=2) ) predict_btn = gr.Button("🔮 Predict ATAR", variant="primary") prediction_output = gr.Code(label="Output: Prediction JSON", language="json") predict_btn.click( fn=predict_interface, inputs=subjects_input, outputs=prediction_output ) gr.Markdown(""" **Note:** - Model auto-loads `latest` version on first API call if not manually loaded - Manually load a specific version to test different models - All versions are preserved in HF Model Repo - **Public repos**: No token needed for downloads - **Private repos**: Set `HF_TOKEN` environment variable in Space settings """) # Tab 3: Simple Calculator with gr.Tab("📝 Simple Calculator"): gr.Markdown("### Quick ATAR Estimate") with gr.Row(): with gr.Column(): subj1 = gr.Dropdown(choices=list(SUBJECT_SCALING_DATA.keys()), label="Subject 1") mark1 = gr.Slider(0, 100, 85, label="Mark") with gr.Column(): subj2 = gr.Dropdown(choices=list(SUBJECT_SCALING_DATA.keys()), label="Subject 2") mark2 = gr.Slider(0, 100, 85, label="Mark") with gr.Row(): with gr.Column(): subj3 = gr.Dropdown(choices=list(SUBJECT_SCALING_DATA.keys()), label="Subject 3") mark3 = gr.Slider(0, 100, 85, label="Mark") with gr.Column(): subj4 = gr.Dropdown(choices=list(SUBJECT_SCALING_DATA.keys()), label="Subject 4") mark4 = gr.Slider(0, 100, 85, label="Mark") calc_btn = gr.Button("Calculate ATAR", variant="primary") calc_output = gr.Textbox(label="Result", lines=8) def simple_calc(s1, m1, s2, m2, s3, m3, s4, m4): subjects = [] for s, m in [(s1, m1), (s2, m2), (s3, m3), (s4, m4)]: if s: subjects.append({"subject_name": s, "raw_mark": m, "trend": "stable", "assessment_count": 3}) if not subjects: return "⚠️ Please select at least one subject" result = predict_atar(subjects) if 'error' in result: return f"❌ {result['error']}" output = f"🎯 Predicted ATAR: {result['predicted_atar']}\n" output += f"📊 Confidence: {result['confidence']*100:.0f}%\n\n" output += "💡 Insights:\n" + "\n".join(result['insights']) return output calc_btn.click( fn=simple_calc, inputs=[subj1, mark1, subj2, mark2, subj3, mark3, subj4, mark4], outputs=calc_output ) # Tab 4: Scaling Reference with gr.Tab("📊 Scaling Reference"): gr.Markdown("### 2024 HSC Subject Scaling Data") scaling_df = pd.DataFrame([ { 'Subject': name, 'Scaling Factor': f"{data['scaling_factor']:.4f}", 'Mean Mark': data['mean'], 'Difficulty': data['difficulty'] } for name, data in sorted(SUBJECT_SCALING_DATA.items(), key=lambda x: x[1]['scaling_factor'], reverse=True) ]) gr.Dataframe(scaling_df, label="Subject Scaling Factors (sorted by scaling)") # ============================================ # LAUNCH # ============================================ if __name__ == "__main__": app.launch(share=True, server_name="0.0.0.0", server_port=7860)