Sripriya16's picture
Update app.py
daf4097 verified
import os
import fitz # PyMuPDF
import fasttext
import requests
import json
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from IndicTransToolkit.processor import IndicProcessor
import google.generativeai as genai
import gradio as gr
# === 1. CONFIGURATION & SECRETS ===
# --- Load the Gemini API Key from Hugging Face Secrets ---
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
# --- Model IDs (Using the CPU-friendly TrOCR model) ---
TRANSLATION_MODEL_REPO_ID = "ai4bharat/indictrans2-indic-en-1B"
OCR_MODEL_ID = "microsoft/trocr-base-printed"
# --- Language Settings ---
LANGUAGE_TO_TRANSLATE = "mal"
# --- Hardware Settings ---
DEVICE = "cpu" # Forcing CPU for compatibility with free tier
# === 2. LOAD MODELS & CONFIGURE API ===
# --- Configure Gemini API ---
if not GEMINI_API_KEY:
print("πŸ”΄ ERROR: Gemini API key is not set in the Space Secrets.")
else:
genai.configure(api_key=GEMINI_API_KEY)
# --- Load Translation Model ---
print(f"Loading tokenizer & model: {TRANSLATION_MODEL_REPO_ID} ...")
translation_tokenizer = AutoTokenizer.from_pretrained(TRANSLATION_MODEL_REPO_ID, trust_remote_code=True)
translation_model = AutoModelForSeq2SeqLM.from_pretrained(
TRANSLATION_MODEL_REPO_ID,
trust_remote_code=True,
torch_dtype=torch.float32 # Use float32 for CPU
).to(DEVICE)
print("βœ… Translation model loaded.")
ip = IndicProcessor(inference=True)
# --- Load Language Detection Model ---
print("Loading fastText language detector...")
ft_model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin")
lang_detect_model = fasttext.load_model(ft_model_path)
print("βœ… fastText loaded.")
# --- Load Standard OCR Model ---
print(f"Loading Standard OCR model: {OCR_MODEL_ID}...")
ocr_pipeline = pipeline("image-to-text", model=OCR_MODEL_ID, device=-1) # device=-1 ensures CPU
print("βœ… Standard OCR model loaded.")
# === 3. HELPER FUNCTIONS ===
# --- Phase 1: Text Extraction ---
def classify_image_with_gemini(image: Image.Image):
"""Uses Gemini to classify an image as a 'document' or 'diagram'."""
model = genai.GenerativeModel('gemini-2.5-flash')
prompt = "Is this image primarily a text document or an engineering/technical diagram? Answer with only 'document' or 'diagram'."
response = model.generate_content([prompt, image])
classification = response.text.strip().lower()
print(f"βœ… Image classified as: {classification}")
return "diagram" if "diagram" in classification else "document"
def summarize_diagram_with_gemini(image: Image.Image):
"""Uses Gemini to generate a summary of an engineering diagram."""
model = genai.GenerativeModel('gemini-2.5-flash')
prompt = "You are an engineering assistant for Kochi Metro Rail Limited (KMRL). Describe the contents of this technical diagram or engineering drawing in a concise summary. Identify key components and their apparent purpose."
response = model.generate_content([prompt, image])
print("βœ… Diagram summary successful.")
return response.text.strip()
def extract_text_from_image(path):
"""
Classifies an image and routes it for either OCR (if a text doc) or summarization (if a diagram).
"""
print("\n--- Starting Image Processing ---")
try:
image = Image.open(path).convert("RGB")
# Step 1: Classify the image using Gemini
image_type = classify_image_with_gemini(image)
# Step 2: Route to the correct function
if image_type == "diagram":
print("-> Image is a diagram. Summarizing with Gemini...")
return summarize_diagram_with_gemini(image)
else:
print("-> Image is a document. Extracting text with TrOCR...")
out = ocr_pipeline(image)
return out[0]["generated_text"] if out else ""
except Exception as e:
print(f"❌ An error occurred during image processing: {e}")
return "Error during image processing."
def extract_text_from_pdf(path):
doc = fitz.open(path)
return "".join(page.get_text("text") + "\n" for page in doc)
def read_text_from_txt(path):
with open(path, "r", encoding="utf-8") as f:
return f.read()
# --- Phase 2: Translation ---
def detect_language(text_snippet):
s = text_snippet.replace("\n", " ").strip()
if not s: return None
preds = lang_detect_model.predict(s, k=1)
return preds[0][0].split("__")[-1] if preds and preds[0] else None
def translate_chunk(chunk):
batch = ip.preprocess_batch([chunk], src_lang="mal_Mlym", tgt_lang="eng_Latn")
inputs = translation_tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512).to(DEVICE)
with torch.no_grad():
generated_tokens = translation_model.generate(**inputs, num_beams=5, max_length=512, early_stopping=True)
decoded = translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
return ip.postprocess_batch(decoded, lang=tgt_lang)[0]
# --- Phase 3: Gemini Analysis ---
def generate_structured_json(text_to_analyze):
"""Generates the detailed JSON analysis."""
model = genai.GenerativeModel('gemini-2.5-flash')
prompt = f"You are an AI assistant for KMRL. Analyze this document and extract key info as JSON: {text_to_analyze}"
json_schema = {"type": "OBJECT", "properties": {"summary": {"type": "STRING"}, "actions_required": {"type": "ARRAY", "items": {"type": "OBJECT", "properties": {"action": {"type": "STRING"}, "priority": {"type": "STRING", "enum": ["High", "Medium", "Low"]}, "deadline": {"type": "STRING"}, "notes": {"type": "STRING"}}, "required": ["action", "priority", "deadline", "notes"]}}, "departments_to_notify": {"type": "ARRAY", "items": {"type": "STRING"}}, "cross_document_flags": {"type": "ARRAY", "items": {"type": "OBJECT", "properties": {"related_document_type": {"type": "STRING"}, "related_issue": {"type": "STRING"}}, "required": ["related_document_type", "related_issue"]}}}, "required": ["summary", "actions_required", "departments_to_notify", "cross_document_flags"]}
generation_config = genai.types.GenerationConfig(response_mime_type="application/json", response_schema=json_schema)
response = model.generate_content(prompt, generation_config=generation_config)
return json.loads(response.text)
def check_relevance_with_gemini(summary_text):
"""Checks if the summary is relevant to KMRL."""
model = genai.GenerativeModel('gemini-2.5-flash')
prompt = f'Is this summary related to transportation, infrastructure, railways, or metro systems? Answer only "Yes" or "No".\n\nSummary: {summary_text}'
response = model.generate_content(prompt)
return "yes" in response.text.strip().lower()
# === 4. MAIN PROCESSING FUNCTION FOR GRADIO ===
def process_and_analyze_document(input_file):
if not GEMINI_API_KEY:
raise gr.Error("Gemini API key is not configured. The administrator must set it in the Space Secrets.")
if input_file is None:
raise gr.Error("No file uploaded. Please upload a document.")
try:
input_file_path = input_file.name
ext = os.path.splitext(input_file_path)[1].lower()
# --- Phase 1: Get Original Text ---
if ext == ".pdf":
original_text = extract_text_from_pdf(input_file_path)
elif ext == ".txt":
original_text = read_text_from_txt(input_file_path)
elif ext in [".png", ".jpg", ".jpeg"]:
original_text = extract_text_from_image(input_file_path)
else:
raise gr.Error("Unsupported file type.")
if not original_text or not original_text.strip():
raise gr.Error("No text could be extracted from the document.")
# --- Phase 2: Translate if Necessary ---
lines = original_text.split("\n")
translated_lines = []
for ln in lines:
if not ln.strip(): continue
lang = detect_language(ln)
if lang == LANGUAGE_TO_TRANSLATE:
translated_lines.append(translate_chunk(ln))
else:
translated_lines.append(ln)
final_text = "\n".join(translated_lines)
# --- Phase 3: Analyze with Gemini ---
summary_data = generate_structured_json(final_text)
if not summary_data or "summary" not in summary_data:
raise gr.Error("Failed to generate a valid analysis from the document.")
is_relevant = check_relevance_with_gemini(summary_data["summary"])
if is_relevant:
return summary_data
else:
return {"status": "Not Applicable", "reason": "The document was determined to be not relevant to KMRL."}
except Exception as e:
raise gr.Error(f"An unexpected error occurred: {str(e)}")
iface = gr.Interface(
fn=process_and_analyze_document,
inputs=gr.File(label="Upload Document (.pdf, .txt, .png, .jpeg)"),
outputs=gr.JSON(label="Analysis Result"),
title="KMRL Document Analysis Pipeline",
description="Upload a document (Malayalam or English). The system will detect and translate Malayalam text to English, then send the full text to Gemini for structured analysis.",
allow_flagging="never",
examples=[
["Malayalam-en.txt"] # If you upload this file to your Space
]
)
if __name__ == "__main__":
iface.launch()