Spaces:
Paused
Paused
| # Imports | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| import os | |
| import librosa | |
| from PIL import Image, ImageSequence | |
| from decord import VideoReader, cpu | |
| from transformers import AutoModel, AutoTokenizer, AutoProcessor | |
| # Variables | |
| DEVICE = "auto" | |
| if DEVICE == "auto": | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"[SYSTEM] | Using {DEVICE} type compute device.") | |
| DEFAULT_INPUT = "Describe in one paragraph." | |
| MAX_FRAMES = 64 | |
| model_name = "openbmb/MiniCPM-o-2_6" | |
| repo = AutoModel.from_pretrained(model_name, trust_remote_code=True, attn_implementation="sdpa", torch_dtype=torch.bfloat16).to(DEVICE) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
| processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) | |
| css = ''' | |
| .gradio-container{max-width: 560px !important} | |
| h1{text-align:center} | |
| footer { | |
| visibility: hidden | |
| } | |
| ''' | |
| input_prefixes = { | |
| "Image": "(A image file called β has been attached) ", | |
| "GIF": "(A GIF file called β has been attached) ", | |
| "Video": "(A video with audio file called β has been attached) ", | |
| "Audio": "(A audio file called β has been attached) ", | |
| } | |
| filetypes = { | |
| "Image": [".jpg", ".jpeg", ".png", ".bmp"], | |
| "GIF": [".gif"], | |
| "Video": [".mp4", ".mov", ".avi", ".mkv"], | |
| "Audio": [".wav", ".mp3", ".flac", ".aac"], | |
| } | |
| def uniform_sample(idxs, n): | |
| gap = len(idxs) / n | |
| return [idxs[int(i * gap + gap / 2)] for i in range(n)] | |
| def encode_video(path): | |
| vr = VideoReader(path, ctx=cpu(0)) | |
| fps = round(vr.get_avg_fps()) | |
| idxs = list(range(0, len(vr), fps)) | |
| if len(idxs) > MAX_FRAMES: | |
| idxs = uniform_sample(idxs, MAX_FRAMES) | |
| frames = vr.get_batch(idxs).asnumpy() | |
| return [Image.fromarray(f.astype("uint8")) for f in frames] | |
| def encode_gif(path): | |
| img = Image.open(path) | |
| frames = [frame.copy().convert("RGB") for frame in ImageSequence.Iterator(img)] | |
| if len(frames) > MAX_FRAMES: | |
| frames = uniform_sample(frames, MAX_FRAMES) | |
| return frames | |
| def generate(input, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512): | |
| print(input) | |
| print(instruction) | |
| if not input: | |
| return "No input provided." | |
| extension = os.path.splitext(input)[1].lower() | |
| filetype = None | |
| for category, extensions in filetypes.items(): | |
| if extension in extensions: | |
| filetype = category | |
| break | |
| content = [] | |
| if filetype == "Image": | |
| image = Image.open(input).convert("RGB") | |
| content.append(image) | |
| elif filetype in ["Video", "GIF"]: | |
| frames = encode_gif(input) if filetype == "GIF" else encode_video(input_file) | |
| content.extend(frames) | |
| audio = librosa.load(input, sr=16000, mono=True) | |
| content.append(audio) | |
| elif filetype == "Audio": | |
| audio = librosa.load(input, sr=16000, mono=True) | |
| content.append(audio) | |
| else: | |
| return "Unsupported file type." | |
| filename = os.path.basename(input_file) | |
| prefix = input_prefixes[filetype].replace("β", filename) | |
| content.append(prefix + instruction) | |
| inputs_payload = [{"role": "user", "content": content}] | |
| params = { | |
| "msgs": inputs_payload, | |
| "tokenizer": tokenizer, | |
| "sampling": sampling, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| "max_new_tokens": max_tokens, | |
| } | |
| output = repo.chat(**params) | |
| print(output) | |
| return output | |
| def cloud(): | |
| print("[CLOUD] | Space maintained.") | |
| # Initialize | |
| with gr.Blocks(css=css) as main: | |
| with gr.Column(): | |
| input = gr.File(label="Input", file_types=["image", "video", "audio"], type="filepath") | |
| instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction") | |
| sampling = gr.Checkbox(value=False, label="Sampling") | |
| temperature = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature") | |
| top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P") | |
| top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K") | |
| repetition_penalty = gr.Slider(minimum=0.01, maximum=1.99, step=0.01, value=1.05, label="Repetition Penalty") | |
| max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens") | |
| submit = gr.Button("βΆ") | |
| maintain = gr.Button("βοΈ") | |
| with gr.Column(): | |
| output = gr.Textbox(lines=1, value="", label="Output") | |
| submit.click(fn=generate, inputs=[input, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False) | |
| maintain.click(cloud, inputs=[], outputs=[], queue=False) | |
| main.launch(show_api=True) |