Spaces:
Paused
Paused
| # Imports | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from PIL import Image | |
| from transformers import AutoModel, AutoTokenizer | |
| # Pre-Initialize | |
| DEVICE = "auto" | |
| if DEVICE == "auto": | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| print(f"[SYSTEM] | Using {DEVICE} type compute device.") | |
| # Variables | |
| DEFAULT_INPUT = "Describe in one paragraph." | |
| repo = AutoModel.from_pretrained("openbmb/MiniCPM-V-2_6", torch_dtype=torch.bfloat16, trust_remote_code=True) | |
| tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM-V-2_6", trust_remote_code=True) | |
| css = ''' | |
| .gradio-container{max-width: 560px !important} | |
| h1{text-align:center} | |
| footer { | |
| visibility: hidden | |
| } | |
| ''' | |
| # Functions | |
| def generate(image, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512): | |
| global model, tokenizer | |
| image_rgb = Image.open(image).convert("RGB") | |
| print(image_rgb, instruction) | |
| inputs = [{"role": "user", "content": [image_rgb, instruction]}] | |
| parameters = { | |
| "sampling": sampling, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| "max_new_tokens": max_tokens | |
| } | |
| output = model.chat(image=None, msgs=inputs, tokenizer=tokenizer, **parameters) | |
| return output | |
| def cloud(): | |
| print("[CLOUD] | Space maintained.") | |
| # Initialize | |
| with gr.Blocks(css=css) as main: | |
| with gr.Column(): | |
| gr.Markdown("🪄 Analyze images and caption them using state-of-the-art openbmb/MiniCPM-V-2_6.") | |
| with gr.Column(): | |
| input = gr.Image(label="Image") | |
| instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction") | |
| sampling = gr.Checkbox(value=False, label="Sampling") | |
| temperature = gr.Slider(minimum=0, maximum=2, step=0.01, value=0.7, label="Temperature") | |
| top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P") | |
| top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K") | |
| repetition_penalty = gr.Slider(minimum=0, maximum=2, step=0.01, value=1.05, label="Repetition Penalty") | |
| max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens") | |
| submit = gr.Button("▶") | |
| maintain = gr.Button("☁️") | |
| with gr.Column(): | |
| output = gr.Textbox(lines=1, value="", label="Output") | |
| submit.click(fn=generate, inputs=[input, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False) | |
| maintain.click(cloud, inputs=[], outputs=[], queue=False) | |
| main.launch(show_api=True) |