Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,8 +12,58 @@ if DEVICE == "auto":
|
|
| 12 |
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
|
| 13 |
|
| 14 |
# Variables
|
|
|
|
|
|
|
| 15 |
repo = AutoModel.from_pretrained("openbmb/MiniCPM-V-2_6", torch_dtype=torch.bfloat16, trust_remote_code=True)
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM-V-2_6", trust_remote_code=True)
|
| 17 |
|
| 18 |
# Functions
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
print(f"[SYSTEM] | Using {DEVICE} type compute device.")
|
| 13 |
|
| 14 |
# Variables
|
| 15 |
+
DEFAULT_INPUT = "Describe in one paragraph."
|
| 16 |
+
|
| 17 |
repo = AutoModel.from_pretrained("openbmb/MiniCPM-V-2_6", torch_dtype=torch.bfloat16, trust_remote_code=True)
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained("openbmb/MiniCPM-V-2_6", trust_remote_code=True)
|
| 19 |
|
| 20 |
# Functions
|
| 21 |
+
@spaces.GPU(duration=60)
|
| 22 |
+
def generate(image, instruction=DEFAULT_INPUT, sampling=False, temperature=0.7, top_p=0.8, top_k=100, repetition_penalty=1.05, max_tokens=512):
|
| 23 |
+
global model, tokenizer
|
| 24 |
+
|
| 25 |
+
image_rgb = Image.open(image).convert("RGB")
|
| 26 |
+
print(image_rgb, instruction)
|
| 27 |
+
|
| 28 |
+
inputs = [{"role": "user", "content": [image_rgb, instruction]}]
|
| 29 |
+
|
| 30 |
+
parameters = {
|
| 31 |
+
"sampling": sampling,
|
| 32 |
+
"temperature": temperature,
|
| 33 |
+
"top_p": top_p,
|
| 34 |
+
"top_k": top_k,
|
| 35 |
+
"repetition_penalty": repetition_penalty,
|
| 36 |
+
"max_new_tokens": max_tokens
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
output = model.chat(image=None, msgs=inputs, tokenizer=tokenizer, **parameters)
|
| 40 |
+
|
| 41 |
+
return output
|
| 42 |
+
|
| 43 |
+
def cloud():
|
| 44 |
+
print("[CLOUD] | Space maintained.")
|
| 45 |
+
|
| 46 |
+
# Initialize
|
| 47 |
+
with gr.Blocks(css=css) as main:
|
| 48 |
+
with gr.Column():
|
| 49 |
+
gr.Markdown("🪄 Analyze images and caption them.")
|
| 50 |
+
|
| 51 |
+
with gr.Column():
|
| 52 |
+
input = gr.Image(label="Image")
|
| 53 |
+
instruction = gr.Textbox(lines=1, value=DEFAULT_INPUT, label="Instruction")
|
| 54 |
+
sampling = gr.Checkbox(value=False, label="Sampling")
|
| 55 |
+
temperature = gr.Slider(minimum=0, maximum=2, step=0.01, value=0.7, label="Temperature")
|
| 56 |
+
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P")
|
| 57 |
+
top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K")
|
| 58 |
+
repetition_penalty = gr.Slider(minimum=0, maximum=2, step=0.01, value=1.05, label="Repetition Penalty")
|
| 59 |
+
max_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens")
|
| 60 |
+
submit = gr.Button("▶")
|
| 61 |
+
maintain = gr.Button("☁️")
|
| 62 |
+
|
| 63 |
+
with gr.Column():
|
| 64 |
+
output = gr.Textbox(lines=1, value="", label="Output")
|
| 65 |
+
|
| 66 |
+
submit.click(fn=generate, inputs=[input, instruction, sampling, temperature, top_p, top_k, repetition_penalty, max_tokens], outputs=[output], queue=False)
|
| 67 |
+
maintain.click(cloud, inputs=[], outputs=[], queue=False)
|
| 68 |
+
|
| 69 |
+
main.launch(show_api=True)
|