Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 3 |
+
import torch
|
| 4 |
+
import json
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
|
| 7 |
+
# Load Llama 3 model (quantized for CPU hosting)
|
| 8 |
+
MODEL_NAME = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 9 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 10 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
|
| 11 |
+
|
| 12 |
+
# Load Llama Guard for content moderation
|
| 13 |
+
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
| 14 |
+
guard_tokenizer = AutoTokenizer.from_pretrained(LLAMA_GUARD_NAME)
|
| 15 |
+
guard_model = AutoModelForCausalLM.from_pretrained(LLAMA_GUARD_NAME, torch_dtype=torch.float16, device_map="auto")
|
| 16 |
+
|
| 17 |
+
# Define Prompt Templates
|
| 18 |
+
PROMPTS = {
|
| 19 |
+
"project_analysis": """Analyze this project description and generate:
|
| 20 |
+
1. Project timeline with milestones
|
| 21 |
+
2. Required technology stack
|
| 22 |
+
3. Potential risks
|
| 23 |
+
4. Team composition
|
| 24 |
+
5. Cost estimation
|
| 25 |
+
|
| 26 |
+
Project: {project_description}""",
|
| 27 |
+
|
| 28 |
+
"code_generation": """Generate implementation code for this feature:
|
| 29 |
+
{feature_description}
|
| 30 |
+
|
| 31 |
+
Considerations:
|
| 32 |
+
- Use {programming_language}
|
| 33 |
+
- Follow {coding_standards}
|
| 34 |
+
- Include error handling
|
| 35 |
+
- Add documentation""",
|
| 36 |
+
|
| 37 |
+
"risk_analysis": """Predict potential risks for this project plan:
|
| 38 |
+
{project_data}
|
| 39 |
+
|
| 40 |
+
Format output as JSON with risk types, probabilities, and mitigation strategies"""
|
| 41 |
+
}
|
| 42 |
+
|
| 43 |
+
# Function: Content Moderation using Llama Guard
|
| 44 |
+
def moderate_input(user_input):
|
| 45 |
+
inputs = guard_tokenizer(user_input, return_tensors="pt", max_length=512, truncation=True)
|
| 46 |
+
outputs = guard_model.generate(inputs.input_ids, max_length=512)
|
| 47 |
+
response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 48 |
+
|
| 49 |
+
if "flagged" in response.lower():
|
| 50 |
+
return "⚠️ Content flagged by Llama Guard. Please modify your input."
|
| 51 |
+
return None # Safe input, proceed normally
|
| 52 |
+
|
| 53 |
+
# Function: Generate AI responses (Project Analysis, Code, or Risks)
|
| 54 |
+
def generate_response(prompt_type, **kwargs):
|
| 55 |
+
prompt = PROMPTS[prompt_type].format(**kwargs)
|
| 56 |
+
|
| 57 |
+
moderation_warning = moderate_input(prompt)
|
| 58 |
+
if moderation_warning:
|
| 59 |
+
return moderation_warning # Stop processing if flagged
|
| 60 |
+
|
| 61 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=2048, truncation=True)
|
| 62 |
+
|
| 63 |
+
outputs = model.generate(
|
| 64 |
+
inputs.input_ids,
|
| 65 |
+
max_length=2048,
|
| 66 |
+
temperature=0.7 if prompt_type == "project_analysis" else 0.5,
|
| 67 |
+
top_p=0.9
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 71 |
+
|
| 72 |
+
# Function: Analyze project
|
| 73 |
+
def analyze_project(project_desc):
|
| 74 |
+
return generate_response("project_analysis", project_description=project_desc)
|
| 75 |
+
|
| 76 |
+
# Function: Generate code
|
| 77 |
+
def generate_code(feature_desc, lang="Python", standards="PEP8"):
|
| 78 |
+
return generate_response("code_generation", feature_description=feature_desc, programming_language=lang, coding_standards=standards)
|
| 79 |
+
|
| 80 |
+
# Function: Predict risks
|
| 81 |
+
def predict_risks(project_data):
|
| 82 |
+
risks = generate_response("risk_analysis", project_data=project_data)
|
| 83 |
+
try:
|
| 84 |
+
return json.loads(risks) # Convert to structured JSON if valid
|
| 85 |
+
except json.JSONDecodeError:
|
| 86 |
+
return {"error": "Invalid JSON response. Please refine your input."}
|
| 87 |
+
|
| 88 |
+
# Gradio UI
|
| 89 |
+
def create_gradio_interface():
|
| 90 |
+
with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
|
| 91 |
+
gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
|
| 92 |
+
|
| 93 |
+
# Project Analysis Tab
|
| 94 |
+
with gr.Tab("Project Setup"):
|
| 95 |
+
project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
|
| 96 |
+
project_output = gr.JSON(label="Project Analysis")
|
| 97 |
+
analyze_btn = gr.Button("Analyze Project")
|
| 98 |
+
analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
|
| 99 |
+
|
| 100 |
+
# Code Generation Tab
|
| 101 |
+
with gr.Tab("Code Assistant"):
|
| 102 |
+
code_input = gr.Textbox(label="Feature Description", lines=3)
|
| 103 |
+
lang_select = gr.Dropdown(["Python", "JavaScript", "Java", "C++"], label="Language", value="Python")
|
| 104 |
+
standards_select = gr.Dropdown(["PEP8", "Google", "Airbnb"], label="Coding Standard", value="PEP8")
|
| 105 |
+
code_output = gr.Code(label="Generated Code")
|
| 106 |
+
code_btn = gr.Button("Generate Code")
|
| 107 |
+
code_btn.click(generate_code, inputs=[code_input, lang_select, standards_select], outputs=code_output)
|
| 108 |
+
|
| 109 |
+
# Risk Analysis Tab
|
| 110 |
+
with gr.Tab("Risk Analysis"):
|
| 111 |
+
risk_input = gr.Textbox(label="Project Plan", lines=5)
|
| 112 |
+
risk_output = gr.JSON(label="Risk Predictions")
|
| 113 |
+
risk_btn = gr.Button("Predict Risks")
|
| 114 |
+
risk_btn.click(predict_risks, inputs=risk_input, outputs=risk_output)
|
| 115 |
+
|
| 116 |
+
# Real-time Chatbot for Collaboration
|
| 117 |
+
with gr.Tab("Live Collaboration"):
|
| 118 |
+
gr.Markdown("## Real-time Project Collaboration")
|
| 119 |
+
chat = gr.Chatbot(height=400)
|
| 120 |
+
msg = gr.Textbox(label="Chat with AI PM")
|
| 121 |
+
clear = gr.Button("Clear Chat")
|
| 122 |
+
|
| 123 |
+
def respond(message, chat_history):
|
| 124 |
+
moderation_warning = moderate_input(message)
|
| 125 |
+
if moderation_warning:
|
| 126 |
+
chat_history.append((message, moderation_warning))
|
| 127 |
+
return "", chat_history
|
| 128 |
+
|
| 129 |
+
prompt = f"""Project Management Chat:
|
| 130 |
+
Context: {message}
|
| 131 |
+
Chat History: {chat_history}
|
| 132 |
+
User: {message}
|
| 133 |
+
AI:"""
|
| 134 |
+
|
| 135 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 136 |
+
outputs = model.generate(inputs.input_ids, max_length=2048)
|
| 137 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 138 |
+
chat_history.append((message, response))
|
| 139 |
+
return "", chat_history
|
| 140 |
+
|
| 141 |
+
msg.submit(respond, [msg, chat], [msg, chat])
|
| 142 |
+
clear.click(lambda: None, None, chat, queue=False)
|
| 143 |
+
|
| 144 |
+
return demo
|
| 145 |
+
|
| 146 |
+
# Run Gradio App
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
interface = create_gradio_interface()
|
| 149 |
+
interface.launch(share=True)
|