Update app.py
Browse files
app.py
CHANGED
|
@@ -23,43 +23,44 @@ QLORA_ADAPTER = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8" # Ensure this
|
|
| 23 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4" # Ensure this is correct
|
| 24 |
|
| 25 |
# Function to load Llama model
|
| 26 |
-
def load_llama_model(
|
| 27 |
-
print(f"Loading
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
| 63 |
|
| 64 |
except Exception as e:
|
| 65 |
print(f"❌ Error loading model {model_path}: {e}")
|
|
|
|
| 23 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4" # Ensure this is correct
|
| 24 |
|
| 25 |
# Function to load Llama model
|
| 26 |
+
def load_llama_model():
|
| 27 |
+
print(f"🔄 Loading Base Model: {BASE_MODEL}")
|
| 28 |
+
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, use_auth_token=HUGGINGFACE_TOKEN)
|
| 30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 31 |
+
BASE_MODEL,
|
| 32 |
+
use_auth_token=HUGGINGFACE_TOKEN,
|
| 33 |
+
torch_dtype=torch.float16,
|
| 34 |
+
low_cpu_mem_usage=True
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
print(f"✅ Base Model Loaded Successfully")
|
| 38 |
+
|
| 39 |
+
# Load QLoRA adapter if available
|
| 40 |
+
print(f"🔄 Loading QLoRA Adapter: {QLORA_ADAPTER}")
|
| 41 |
+
model = PeftModel.from_pretrained(model, QLORA_ADAPTER, use_auth_token=HUGGINGFACE_TOKEN)
|
| 42 |
+
print("🔄 Merging LoRA Weights...")
|
| 43 |
+
model = model.merge_and_unload()
|
| 44 |
+
print("✅ QLoRA Adapter Loaded Successfully")
|
| 45 |
+
|
| 46 |
+
model.eval()
|
| 47 |
+
return tokenizer, model
|
| 48 |
+
|
| 49 |
+
# Function to load Llama Guard Model for content moderation
|
| 50 |
+
def load_llama_guard():
|
| 51 |
+
print(f"🔄 Loading Llama Guard Model: {LLAMA_GUARD_NAME}")
|
| 52 |
+
|
| 53 |
+
tokenizer = AutoTokenizer.from_pretrained(LLAMA_GUARD_NAME, use_auth_token=HUGGINGFACE_TOKEN)
|
| 54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 55 |
+
LLAMA_GUARD_NAME,
|
| 56 |
+
use_auth_token=HUGGINGFACE_TOKEN,
|
| 57 |
+
torch_dtype=torch.float16,
|
| 58 |
+
low_cpu_mem_usage=True
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
model.eval()
|
| 62 |
+
print("✅ Llama Guard Model Loaded Successfully")
|
| 63 |
+
return tokenizer, model
|
| 64 |
|
| 65 |
except Exception as e:
|
| 66 |
print(f"❌ Error loading model {model_path}: {e}")
|