Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,7 @@ import os
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import json
|
| 5 |
-
from transformers import LlamaTokenizer,
|
| 6 |
from peft import PeftModel
|
| 7 |
|
| 8 |
# Set Hugging Face Token for Authentication
|
|
@@ -14,27 +14,36 @@ if not HUGGINGFACE_TOKEN:
|
|
| 14 |
print("✅ HUGGINGFACE_TOKEN is set.")
|
| 15 |
|
| 16 |
# Model Paths
|
| 17 |
-
|
| 18 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
| 19 |
|
| 20 |
# Function to load Llama model (without LoRA)
|
| 21 |
-
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
|
| 39 |
# Load the quantized Llama model
|
| 40 |
tokenizer, model = load_llama_model(QUANTIZED_MODEL)
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import json
|
| 5 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM
|
| 6 |
from peft import PeftModel
|
| 7 |
|
| 8 |
# Set Hugging Face Token for Authentication
|
|
|
|
| 14 |
print("✅ HUGGINGFACE_TOKEN is set.")
|
| 15 |
|
| 16 |
# Model Paths
|
| 17 |
+
MODEL_PATH = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8" # Directly using quantized model
|
| 18 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
| 19 |
|
| 20 |
# Function to load Llama model (without LoRA)
|
| 21 |
+
# Load Model Manually (for Quantized Models)
|
| 22 |
+
def load_quantized_model(model_path):
|
| 23 |
+
print(f"🔄 Loading Quantized Model: {model_path}")
|
| 24 |
|
| 25 |
+
# Load config file manually
|
| 26 |
+
from transformers import LlamaConfig
|
| 27 |
+
config = LlamaConfig.from_pretrained(model_path)
|
| 28 |
+
|
| 29 |
+
# Initialize model
|
| 30 |
+
model = LlamaForCausalLM(config)
|
| 31 |
+
|
| 32 |
+
# Load quantized state_dict
|
| 33 |
+
checkpoint_path = os.path.join(model_path, "consolidated.00.pth")
|
| 34 |
+
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
| 35 |
+
|
| 36 |
+
# Load state dict into model
|
| 37 |
+
model.load_state_dict(state_dict, strict=False)
|
| 38 |
+
|
| 39 |
+
print("✅ Quantized model loaded successfully!")
|
| 40 |
+
return model
|
| 41 |
+
|
| 42 |
+
# Load Tokenizer
|
| 43 |
+
tokenizer = LlamaTokenizer.from_pretrained(MODEL_PATH, token=HUGGINGFACE_TOKEN)
|
| 44 |
|
| 45 |
+
# Load the model
|
| 46 |
+
model = load_quantized_model(MODEL_PATH)
|
| 47 |
|
| 48 |
# Load the quantized Llama model
|
| 49 |
tokenizer, model = load_llama_model(QUANTIZED_MODEL)
|