Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,84 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
-
from transformers import LlamaTokenizer, AutoModelForCausalLM
|
| 4 |
import torch
|
| 5 |
import json
|
|
|
|
| 6 |
|
| 7 |
# Set Hugging Face Token for Authentication (ensure it's set in your environment)
|
| 8 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
| 9 |
|
| 10 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"
|
| 12 |
-
tokenizer =
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
token=HUGGINGFACE_TOKEN,
|
| 16 |
-
device_map="cpu"
|
| 17 |
-
)
|
| 18 |
-
|
| 19 |
-
# Load Llama Guard for content moderation on CPU
|
| 20 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
| 21 |
-
guard_tokenizer =
|
| 22 |
-
guard_model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
-
LLAMA_GUARD_NAME,
|
| 24 |
-
token=HUGGINGFACE_TOKEN,
|
| 25 |
-
device_map="cpu"
|
| 26 |
-
)
|
| 27 |
|
| 28 |
# Define Prompt Templates
|
| 29 |
PROMPTS = {
|
| 30 |
-
"project_analysis": """Analyze this project description and generate:
|
| 31 |
1. Project timeline with milestones
|
| 32 |
2. Required technology stack
|
| 33 |
3. Potential risks
|
| 34 |
4. Team composition
|
| 35 |
5. Cost estimation
|
| 36 |
|
| 37 |
-
Project: {project_description}""",
|
| 38 |
|
| 39 |
-
"code_generation": """Generate implementation code for this feature:
|
| 40 |
{feature_description}
|
| 41 |
|
| 42 |
Considerations:
|
| 43 |
- Use {programming_language}
|
| 44 |
- Follow {coding_standards}
|
| 45 |
- Include error handling
|
| 46 |
-
- Add documentation""",
|
| 47 |
|
| 48 |
-
"risk_analysis": """Predict potential risks for this project plan:
|
| 49 |
{project_data}
|
| 50 |
|
| 51 |
-
Format output as JSON with risk types, probabilities, and mitigation strategies"""
|
| 52 |
}
|
| 53 |
|
| 54 |
# Function: Content Moderation using Llama Guard
|
| 55 |
def moderate_input(user_input):
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 59 |
|
| 60 |
-
if "flagged" in response.lower():
|
| 61 |
return "⚠️ Content flagged by Llama Guard. Please modify your input."
|
| 62 |
return None # Safe input, proceed normally
|
| 63 |
|
|
@@ -69,14 +90,16 @@ def generate_response(prompt_type, **kwargs):
|
|
| 69 |
if moderation_warning:
|
| 70 |
return moderation_warning # Stop processing if flagged
|
| 71 |
|
| 72 |
-
inputs = tokenizer(prompt, return_tensors="pt",
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
| 80 |
|
| 81 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 82 |
|
|
@@ -92,7 +115,12 @@ def generate_code(feature_desc, lang="Python", standards="PEP8"):
|
|
| 92 |
def predict_risks(project_data):
|
| 93 |
risks = generate_response("risk_analysis", project_data=project_data)
|
| 94 |
try:
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
except json.JSONDecodeError:
|
| 97 |
return {"error": "Invalid JSON response. Please refine your input."}
|
| 98 |
|
|
@@ -104,7 +132,7 @@ def create_gradio_interface():
|
|
| 104 |
# Project Analysis Tab
|
| 105 |
with gr.Tab("Project Setup"):
|
| 106 |
project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
|
| 107 |
-
project_output = gr.
|
| 108 |
analyze_btn = gr.Button("Analyze Project")
|
| 109 |
analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
|
| 110 |
|
|
@@ -137,14 +165,27 @@ def create_gradio_interface():
|
|
| 137 |
chat_history.append((message, moderation_warning))
|
| 138 |
return "", chat_history
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
| 147 |
-
outputs = model.generate(inputs.input_ids, max_length=1024)
|
| 148 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 149 |
chat_history.append((message, response))
|
| 150 |
return "", chat_history
|
|
@@ -157,4 +198,4 @@ def create_gradio_interface():
|
|
| 157 |
# Run Gradio App
|
| 158 |
if __name__ == "__main__":
|
| 159 |
interface = create_gradio_interface()
|
| 160 |
-
interface.launch(share=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import torch
|
| 4 |
import json
|
| 5 |
+
from transformers import AutoTokenizer
|
| 6 |
|
| 7 |
# Set Hugging Face Token for Authentication (ensure it's set in your environment)
|
| 8 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
| 9 |
|
| 10 |
+
# Function to load Llama model
|
| 11 |
+
def load_llama_model(model_name):
|
| 12 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
| 13 |
+
|
| 14 |
+
# Use AutoTokenizer which will handle various tokenizer types
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_TOKEN, use_fast=False)
|
| 16 |
+
|
| 17 |
+
# Use the LlamaForCausalLM class which can properly load the consolidated.00.pth format
|
| 18 |
+
model = LlamaForCausalLM.from_pretrained(
|
| 19 |
+
model_name,
|
| 20 |
+
token=HUGGINGFACE_TOKEN,
|
| 21 |
+
torch_dtype=torch.float16, # Use float16 to reduce memory usage on CPU
|
| 22 |
+
low_cpu_mem_usage=True, # Optimize for low memory usage
|
| 23 |
+
device_map="cpu"
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
return tokenizer, model
|
| 27 |
+
|
| 28 |
+
# Load Llama 3.2 model
|
| 29 |
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"
|
| 30 |
+
tokenizer, model = load_llama_model(MODEL_NAME)
|
| 31 |
+
|
| 32 |
+
# Load Llama Guard for content moderation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
| 34 |
+
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
# Define Prompt Templates
|
| 37 |
PROMPTS = {
|
| 38 |
+
"project_analysis": """<|begin_of_text|><|prompt|>Analyze this project description and generate:
|
| 39 |
1. Project timeline with milestones
|
| 40 |
2. Required technology stack
|
| 41 |
3. Potential risks
|
| 42 |
4. Team composition
|
| 43 |
5. Cost estimation
|
| 44 |
|
| 45 |
+
Project: {project_description}<|completion|>""",
|
| 46 |
|
| 47 |
+
"code_generation": """<|begin_of_text|><|prompt|>Generate implementation code for this feature:
|
| 48 |
{feature_description}
|
| 49 |
|
| 50 |
Considerations:
|
| 51 |
- Use {programming_language}
|
| 52 |
- Follow {coding_standards}
|
| 53 |
- Include error handling
|
| 54 |
+
- Add documentation<|completion|>""",
|
| 55 |
|
| 56 |
+
"risk_analysis": """<|begin_of_text|><|prompt|>Predict potential risks for this project plan:
|
| 57 |
{project_data}
|
| 58 |
|
| 59 |
+
Format output as JSON with risk types, probabilities, and mitigation strategies<|completion|>"""
|
| 60 |
}
|
| 61 |
|
| 62 |
# Function: Content Moderation using Llama Guard
|
| 63 |
def moderate_input(user_input):
|
| 64 |
+
# Llama Guard specific prompt format
|
| 65 |
+
prompt = f"""<|begin_of_text|><|user|>
|
| 66 |
+
Input: {user_input}
|
| 67 |
+
Please verify that this input doesn't violate any content policies.
|
| 68 |
+
<|assistant|>"""
|
| 69 |
+
|
| 70 |
+
inputs = guard_tokenizer(prompt, return_tensors="pt", truncation=True)
|
| 71 |
+
|
| 72 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
| 73 |
+
outputs = guard_model.generate(
|
| 74 |
+
inputs.input_ids,
|
| 75 |
+
max_length=256,
|
| 76 |
+
temperature=0.1
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 80 |
|
| 81 |
+
if "flagged" in response.lower() or "violated" in response.lower() or "policy violation" in response.lower():
|
| 82 |
return "⚠️ Content flagged by Llama Guard. Please modify your input."
|
| 83 |
return None # Safe input, proceed normally
|
| 84 |
|
|
|
|
| 90 |
if moderation_warning:
|
| 91 |
return moderation_warning # Stop processing if flagged
|
| 92 |
|
| 93 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
| 94 |
|
| 95 |
+
with torch.no_grad(): # Disable gradient calculation for inference
|
| 96 |
+
outputs = model.generate(
|
| 97 |
+
inputs.input_ids,
|
| 98 |
+
max_length=1024,
|
| 99 |
+
temperature=0.7 if prompt_type == "project_analysis" else 0.5,
|
| 100 |
+
top_p=0.9,
|
| 101 |
+
do_sample=True
|
| 102 |
+
)
|
| 103 |
|
| 104 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 105 |
|
|
|
|
| 115 |
def predict_risks(project_data):
|
| 116 |
risks = generate_response("risk_analysis", project_data=project_data)
|
| 117 |
try:
|
| 118 |
+
# Try to extract JSON part from the response
|
| 119 |
+
import re
|
| 120 |
+
json_match = re.search(r'\{.*\}', risks, re.DOTALL)
|
| 121 |
+
if json_match:
|
| 122 |
+
return json.loads(json_match.group(0))
|
| 123 |
+
return {"error": "Could not parse JSON response"}
|
| 124 |
except json.JSONDecodeError:
|
| 125 |
return {"error": "Invalid JSON response. Please refine your input."}
|
| 126 |
|
|
|
|
| 132 |
# Project Analysis Tab
|
| 133 |
with gr.Tab("Project Setup"):
|
| 134 |
project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
|
| 135 |
+
project_output = gr.Textbox(label="Project Analysis", lines=15) # Changed from JSON to Textbox for better formatting
|
| 136 |
analyze_btn = gr.Button("Analyze Project")
|
| 137 |
analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
|
| 138 |
|
|
|
|
| 165 |
chat_history.append((message, moderation_warning))
|
| 166 |
return "", chat_history
|
| 167 |
|
| 168 |
+
# Format chat history for context
|
| 169 |
+
history_text = ""
|
| 170 |
+
for i, (usr, ai) in enumerate(chat_history[-3:]): # Use last 3 messages for context
|
| 171 |
+
history_text += f"User: {usr}\nAI: {ai}\n"
|
| 172 |
+
|
| 173 |
+
prompt = f"""<|begin_of_text|><|prompt|>Project Management Chat:
|
| 174 |
+
Context: {message}
|
| 175 |
+
Chat History: {history_text}
|
| 176 |
+
User: {message}<|completion|>"""
|
| 177 |
+
|
| 178 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
| 179 |
+
|
| 180 |
+
with torch.no_grad():
|
| 181 |
+
outputs = model.generate(
|
| 182 |
+
inputs.input_ids,
|
| 183 |
+
max_length=1024,
|
| 184 |
+
temperature=0.7,
|
| 185 |
+
top_p=0.9,
|
| 186 |
+
do_sample=True
|
| 187 |
+
)
|
| 188 |
|
|
|
|
|
|
|
| 189 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 190 |
chat_history.append((message, response))
|
| 191 |
return "", chat_history
|
|
|
|
| 198 |
# Run Gradio App
|
| 199 |
if __name__ == "__main__":
|
| 200 |
interface = create_gradio_interface()
|
| 201 |
+
interface.launch(share=True)
|