Update app.py
Browse files
app.py
CHANGED
|
@@ -2,39 +2,35 @@ import os
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import json
|
| 5 |
-
from transformers import
|
| 6 |
from peft import PeftModel
|
| 7 |
|
| 8 |
# Set Hugging Face Token for Authentication
|
| 9 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Ensure this is set in your environment
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
# Correct model paths (replace with your actual paths)
|
| 21 |
-
BASE_MODEL = "meta-llama/Llama-3.2-1B-Instruct" # Ensure this is the correct identifier
|
| 22 |
-
QLORA_ADAPTER = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8" # Ensure this is correct
|
| 23 |
-
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4" # Ensure this is correct
|
| 24 |
|
| 25 |
# Function to load Llama model
|
| 26 |
-
def load_llama_model(base_model=BASE_MODEL, adapter=None):
|
| 27 |
-
print(f"🔄 Loading
|
| 28 |
|
| 29 |
-
tokenizer =
|
| 30 |
model = AutoModelForCausalLM.from_pretrained(
|
| 31 |
base_model,
|
| 32 |
token=HUGGINGFACE_TOKEN,
|
| 33 |
-
torch_dtype=torch.
|
| 34 |
low_cpu_mem_usage=True
|
| 35 |
)
|
| 36 |
|
| 37 |
-
if adapter:
|
| 38 |
print(f"🔄 Loading Adapter: {adapter}")
|
| 39 |
model = PeftModel.from_pretrained(model, adapter, token=HUGGINGFACE_TOKEN)
|
| 40 |
model = model.merge_and_unload()
|
|
@@ -43,58 +39,40 @@ def load_llama_model(base_model=BASE_MODEL, adapter=None):
|
|
| 43 |
model.eval()
|
| 44 |
return tokenizer, model
|
| 45 |
|
| 46 |
-
# Function to load Llama Guard Model for content moderation
|
| 47 |
-
def load_llama_guard():
|
| 48 |
-
print(f"🔄 Loading Llama Guard Model: {LLAMA_GUARD_NAME}")
|
| 49 |
-
|
| 50 |
-
tokenizer = AutoTokenizer.from_pretrained(LLAMA_GUARD_NAME, use_auth_token=HUGGINGFACE_TOKEN)
|
| 51 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 52 |
-
LLAMA_GUARD_NAME,
|
| 53 |
-
use_auth_token=HUGGINGFACE_TOKEN,
|
| 54 |
-
torch_dtype=torch.float16,
|
| 55 |
-
low_cpu_mem_usage=True
|
| 56 |
-
)
|
| 57 |
-
|
| 58 |
-
model.eval()
|
| 59 |
-
print("✅ Llama Guard Model Loaded Successfully")
|
| 60 |
-
return tokenizer, model
|
| 61 |
-
|
| 62 |
# Load Llama 3.2 model
|
| 63 |
-
tokenizer, model = load_llama_model(QLORA_ADAPTER)
|
| 64 |
|
| 65 |
# Load Llama Guard for content moderation
|
| 66 |
-
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME, is_guard=True)
|
| 67 |
|
| 68 |
-
# Define Prompt Templates
|
| 69 |
PROMPTS = {
|
| 70 |
-
"project_analysis": """
|
| 71 |
1. Project timeline with milestones
|
| 72 |
2. Required technology stack
|
| 73 |
3. Potential risks
|
| 74 |
4. Team composition
|
| 75 |
5. Cost estimation
|
| 76 |
-
Project: {project_description}
|
| 77 |
|
| 78 |
-
"code_generation": """
|
| 79 |
{feature_description}
|
| 80 |
Considerations:
|
| 81 |
- Use {programming_language}
|
| 82 |
- Follow {coding_standards}
|
| 83 |
- Include error handling
|
| 84 |
-
- Add documentation
|
| 85 |
|
| 86 |
-
"risk_analysis": """
|
| 87 |
{project_data}
|
| 88 |
-
Format output as JSON with risk types, probabilities, and mitigation strategies
|
| 89 |
}
|
| 90 |
|
| 91 |
-
# Function: Content Moderation using Llama Guard
|
| 92 |
def moderate_input(user_input):
|
| 93 |
-
prompt = f"""
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
<|assistant|>"""
|
| 97 |
-
|
| 98 |
inputs = guard_tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
|
| 99 |
|
| 100 |
with torch.no_grad():
|
|
@@ -107,7 +85,7 @@ Please verify that this input doesn't violate any content policies.
|
|
| 107 |
|
| 108 |
return None
|
| 109 |
|
| 110 |
-
# Function: Generate AI responses
|
| 111 |
def generate_response(prompt_type, **kwargs):
|
| 112 |
prompt = PROMPTS[prompt_type].format(**kwargs)
|
| 113 |
|
|
@@ -116,7 +94,7 @@ def generate_response(prompt_type, **kwargs):
|
|
| 116 |
return moderation_warning
|
| 117 |
|
| 118 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
| 119 |
-
|
| 120 |
with torch.no_grad():
|
| 121 |
outputs = model.generate(
|
| 122 |
inputs.input_ids,
|
|
@@ -128,7 +106,17 @@ def generate_response(prompt_type, **kwargs):
|
|
| 128 |
|
| 129 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 130 |
|
| 131 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
def create_gradio_interface():
|
| 133 |
with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
|
| 134 |
gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
|
|
@@ -169,11 +157,11 @@ def create_gradio_interface():
|
|
| 169 |
for i, (usr, ai) in enumerate(chat_history[-3:]):
|
| 170 |
history_text += f"User: {usr}\nAI: {ai}\n"
|
| 171 |
|
| 172 |
-
prompt = f"""
|
| 173 |
Context: {message}
|
| 174 |
Chat History: {history_text}
|
| 175 |
-
User: {message}
|
| 176 |
-
|
| 177 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
| 178 |
|
| 179 |
with torch.no_grad():
|
|
@@ -197,4 +185,4 @@ User: {message}<|completion|>"""
|
|
| 197 |
# Run Gradio App
|
| 198 |
if __name__ == "__main__":
|
| 199 |
interface = create_gradio_interface()
|
| 200 |
-
interface.launch(share=True)
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
import json
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
from peft import PeftModel
|
| 7 |
|
| 8 |
# Set Hugging Face Token for Authentication
|
| 9 |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Ensure this is set in your environment
|
| 10 |
|
| 11 |
+
if not HUGGINGFACE_TOKEN:
|
| 12 |
+
raise ValueError("❌ HUGGINGFACE_TOKEN is not set. Please set it in your environment.")
|
| 13 |
+
|
| 14 |
+
print("✅ HUGGINGFACE_TOKEN is set.")
|
| 15 |
+
|
| 16 |
+
# Model Paths (Replace with your actual Hugging Face Model Names)
|
| 17 |
+
BASE_MODEL = "meta-llama/Llama-3.2-1B-Instruct"
|
| 18 |
+
QLORA_ADAPTER = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"
|
| 19 |
+
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
# Function to load Llama model
|
| 22 |
+
def load_llama_model(base_model=BASE_MODEL, adapter=None, is_guard=False):
|
| 23 |
+
print(f"🔄 Loading Model: {base_model}")
|
| 24 |
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model, token=HUGGINGFACE_TOKEN)
|
| 26 |
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
base_model,
|
| 28 |
token=HUGGINGFACE_TOKEN,
|
| 29 |
+
torch_dtype=torch.float32, # Using float32 for CPU compatibility
|
| 30 |
low_cpu_mem_usage=True
|
| 31 |
)
|
| 32 |
|
| 33 |
+
if adapter and not is_guard:
|
| 34 |
print(f"🔄 Loading Adapter: {adapter}")
|
| 35 |
model = PeftModel.from_pretrained(model, adapter, token=HUGGINGFACE_TOKEN)
|
| 36 |
model = model.merge_and_unload()
|
|
|
|
| 39 |
model.eval()
|
| 40 |
return tokenizer, model
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
# Load Llama 3.2 model
|
| 43 |
+
tokenizer, model = load_llama_model(adapter=QLORA_ADAPTER)
|
| 44 |
|
| 45 |
# Load Llama Guard for content moderation
|
| 46 |
+
guard_tokenizer, guard_model = load_llama_model(base_model=LLAMA_GUARD_NAME, is_guard=True)
|
| 47 |
|
| 48 |
+
# Define Prompt Templates
|
| 49 |
PROMPTS = {
|
| 50 |
+
"project_analysis": """Analyze this project description and generate:
|
| 51 |
1. Project timeline with milestones
|
| 52 |
2. Required technology stack
|
| 53 |
3. Potential risks
|
| 54 |
4. Team composition
|
| 55 |
5. Cost estimation
|
| 56 |
+
Project: {project_description}""",
|
| 57 |
|
| 58 |
+
"code_generation": """Generate implementation code for this feature:
|
| 59 |
{feature_description}
|
| 60 |
Considerations:
|
| 61 |
- Use {programming_language}
|
| 62 |
- Follow {coding_standards}
|
| 63 |
- Include error handling
|
| 64 |
+
- Add documentation""",
|
| 65 |
|
| 66 |
+
"risk_analysis": """Predict potential risks for this project plan:
|
| 67 |
{project_data}
|
| 68 |
+
Format output as JSON with risk types, probabilities, and mitigation strategies"""
|
| 69 |
}
|
| 70 |
|
| 71 |
+
# Function: Content Moderation using Llama Guard
|
| 72 |
def moderate_input(user_input):
|
| 73 |
+
prompt = f"""Input: {user_input}
|
| 74 |
+
Please verify that this input doesn't violate any content policies."""
|
| 75 |
+
|
|
|
|
|
|
|
| 76 |
inputs = guard_tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
|
| 77 |
|
| 78 |
with torch.no_grad():
|
|
|
|
| 85 |
|
| 86 |
return None
|
| 87 |
|
| 88 |
+
# Function: Generate AI responses
|
| 89 |
def generate_response(prompt_type, **kwargs):
|
| 90 |
prompt = PROMPTS[prompt_type].format(**kwargs)
|
| 91 |
|
|
|
|
| 94 |
return moderation_warning
|
| 95 |
|
| 96 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
| 97 |
+
|
| 98 |
with torch.no_grad():
|
| 99 |
outputs = model.generate(
|
| 100 |
inputs.input_ids,
|
|
|
|
| 106 |
|
| 107 |
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 108 |
|
| 109 |
+
# Define UI functions
|
| 110 |
+
def analyze_project(project_description):
|
| 111 |
+
return generate_response("project_analysis", project_description=project_description)
|
| 112 |
+
|
| 113 |
+
def generate_code(feature_description, programming_language, coding_standards):
|
| 114 |
+
return generate_response("code_generation", feature_description=feature_description, programming_language=programming_language, coding_standards=coding_standards)
|
| 115 |
+
|
| 116 |
+
def predict_risks(project_data):
|
| 117 |
+
return generate_response("risk_analysis", project_data=project_data)
|
| 118 |
+
|
| 119 |
+
# Gradio UI Setup
|
| 120 |
def create_gradio_interface():
|
| 121 |
with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
|
| 122 |
gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
|
|
|
|
| 157 |
for i, (usr, ai) in enumerate(chat_history[-3:]):
|
| 158 |
history_text += f"User: {usr}\nAI: {ai}\n"
|
| 159 |
|
| 160 |
+
prompt = f"""Project Management Chat:
|
| 161 |
Context: {message}
|
| 162 |
Chat History: {history_text}
|
| 163 |
+
User: {message}"""
|
| 164 |
+
|
| 165 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
| 166 |
|
| 167 |
with torch.no_grad():
|
|
|
|
| 185 |
# Run Gradio App
|
| 186 |
if __name__ == "__main__":
|
| 187 |
interface = create_gradio_interface()
|
| 188 |
+
interface.launch(share=True)
|