Update app.py
Browse files
app.py
CHANGED
|
@@ -23,19 +23,22 @@ def load_llama_model(model_name):
|
|
| 23 |
|
| 24 |
tokenizer = LlamaTokenizer.from_pretrained(model_name, token=HUGGINGFACE_TOKEN)
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
state_dict = torch.
|
| 29 |
|
| 30 |
print("✅ Model state dictionary loaded successfully!")
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
# Load the quantized Llama model
|
| 35 |
tokenizer, model = load_llama_model(QUANTIZED_MODEL)
|
| 36 |
|
| 37 |
# Load Llama Guard for content moderation
|
| 38 |
-
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME
|
| 39 |
|
| 40 |
# Define Prompt Templates
|
| 41 |
PROMPTS = {
|
|
|
|
| 23 |
|
| 24 |
tokenizer = LlamaTokenizer.from_pretrained(model_name, token=HUGGINGFACE_TOKEN)
|
| 25 |
|
| 26 |
+
# Manually load `.pth` state dictionary
|
| 27 |
+
model_url = f"https://huggingface.co/{model_name}/resolve/main/consolidated.00.pth"
|
| 28 |
+
state_dict = torch.hub.load_state_dict_from_url(model_url, map_location="cpu")
|
| 29 |
|
| 30 |
print("✅ Model state dictionary loaded successfully!")
|
| 31 |
+
|
| 32 |
+
# Initialize model and load state_dict
|
| 33 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, state_dict=state_dict)
|
| 34 |
+
|
| 35 |
+
return tokenizer, model
|
| 36 |
|
| 37 |
# Load the quantized Llama model
|
| 38 |
tokenizer, model = load_llama_model(QUANTIZED_MODEL)
|
| 39 |
|
| 40 |
# Load Llama Guard for content moderation
|
| 41 |
+
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME)
|
| 42 |
|
| 43 |
# Define Prompt Templates
|
| 44 |
PROMPTS = {
|