Update app.py
Browse files
app.py
CHANGED
|
@@ -14,38 +14,39 @@ QLORA_ADAPTER = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8" # Ensure this
|
|
| 14 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4" # Ensure this is correct
|
| 15 |
|
| 16 |
# Function to load Llama model
|
| 17 |
-
def load_llama_model(
|
| 18 |
-
print(f"Loading model: {
|
|
|
|
| 19 |
try:
|
| 20 |
# Load tokenizer
|
| 21 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
| 35 |
# Load QLoRA adapter if applicable
|
| 36 |
-
if not is_guard and "QLORA" in
|
| 37 |
print("Loading QLoRA adapter...")
|
| 38 |
-
model = PeftModel.from_pretrained(
|
| 39 |
-
model,
|
| 40 |
-
model_name,
|
| 41 |
-
token=HUGGINGFACE_TOKEN
|
| 42 |
-
)
|
| 43 |
print("Merging LoRA weights...")
|
| 44 |
-
model = model.merge_and_unload()
|
| 45 |
-
|
| 46 |
return tokenizer, model
|
|
|
|
| 47 |
except Exception as e:
|
| 48 |
-
print(f"Error loading model {
|
| 49 |
raise
|
| 50 |
|
| 51 |
# Load Llama 3.2 model
|
|
|
|
| 14 |
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4" # Ensure this is correct
|
| 15 |
|
| 16 |
# Function to load Llama model
|
| 17 |
+
def load_llama_model(model_path, is_guard=False):
|
| 18 |
+
print(f"Loading model: {model_path}")
|
| 19 |
+
|
| 20 |
try:
|
| 21 |
# Load tokenizer
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, token=HUGGINGFACE_TOKEN)
|
| 23 |
+
|
| 24 |
+
# Load config first (to avoid shape mismatch errors)
|
| 25 |
+
config = AutoModelForCausalLM.from_pretrained(BASE_MODEL, config_only=True).config
|
| 26 |
+
|
| 27 |
+
# 🔹 Manually load the `.pth` file
|
| 28 |
+
state_dict_path = os.path.join(model_path, "consolidated.00.pth")
|
| 29 |
+
if not os.path.exists(state_dict_path):
|
| 30 |
+
raise FileNotFoundError(f"Missing model weights: {state_dict_path}")
|
| 31 |
+
|
| 32 |
+
state_dict = torch.load(state_dict_path, map_location="cpu")
|
| 33 |
+
|
| 34 |
+
# Load model from config and manually apply weights
|
| 35 |
+
model = AutoModelForCausalLM.from_config(config)
|
| 36 |
+
model.load_state_dict(state_dict, strict=False) # Use strict=False to allow missing keys
|
| 37 |
+
model.eval() # Set to inference mode
|
| 38 |
+
|
| 39 |
# Load QLoRA adapter if applicable
|
| 40 |
+
if not is_guard and "QLORA" in model_path:
|
| 41 |
print("Loading QLoRA adapter...")
|
| 42 |
+
model = PeftModel.from_pretrained(model, model_path, token=HUGGINGFACE_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
print("Merging LoRA weights...")
|
| 44 |
+
model = model.merge_and_unload()
|
| 45 |
+
|
| 46 |
return tokenizer, model
|
| 47 |
+
|
| 48 |
except Exception as e:
|
| 49 |
+
print(f"❌ Error loading model {model_path}: {e}")
|
| 50 |
raise
|
| 51 |
|
| 52 |
# Load Llama 3.2 model
|