File size: 8,363 Bytes
7e6946d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import onnxruntime
import torch
import torch.nn.functional as F

from cosyvoice2.flow.decoder_dit import DiT
from cosyvoice2.utils.mask import make_pad_mask


"""
Inference wrapper
"""
class CausalConditionalCFM(torch.nn.Module):
    def __init__(self, estimator: DiT, inference_cfg_rate:float=0.7):
        super().__init__()
        self.estimator = estimator
        self.inference_cfg_rate = inference_cfg_rate
        self.out_channels = estimator.out_channels
         # a maximum of 600s
        self.register_buffer('rand_noise', torch.randn([1, self.out_channels, 50 * 600]), persistent=False)

        self.register_buffer('cnn_cache_buffer', torch.zeros(16, 16, 2, 1024, 2), persistent=False)
        self.register_buffer('att_cache_buffer', torch.zeros(16, 16, 2, 8, 1000, 128), persistent=False)

    def scatter_cuda_graph(self, enable_cuda_graph: bool):
        if enable_cuda_graph:
            self.estimator._init_cuda_graph_all()

    def solve_euler(self, x, t_span, mu, mask, spks, cond):
        """
        Fixed euler solver for ODEs.
        Args:
            x (torch.Tensor): random noise
            t_span (torch.Tensor): n_timesteps interpolated
                shape: (n_timesteps + 1,)
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): output_mask
                shape: (batch_size, 1, mel_timesteps)
            spks (torch.Tensor, optional): speaker ids. Defaults to None.
                shape: (batch_size, spk_emb_dim)
            cond: Not used but kept for future purposes
        """
        t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
        t = t.unsqueeze(dim=0)
        assert self.inference_cfg_rate > 0, 'inference_cfg_rate better > 0'

        # constant during denoising
        mask_in = torch.cat([mask, mask], dim=0)
        mu_in = torch.cat([mu, torch.zeros_like(mu)], dim=0)
        spks_in = torch.cat([spks, torch.zeros_like(spks)], dim=0)
        cond_in = torch.cat([cond, torch.zeros_like(cond)], dim=0)
        
        for step in range(1, len(t_span)):

            x_in = torch.cat([x, x], dim=0)
            t_in = torch.cat([t, t], dim=0)

            dphi_dt = self.estimator.forward(
                x_in,
                mask_in,
                mu_in,
                t_in,
                spks_in,
                cond_in,
            )
            dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
            dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
            x = x + dt * dphi_dt
            t = t + dt
            if step < len(t_span) - 1:
                dt = t_span[step + 1] - t

        return x

    @torch.inference_mode()
    def forward(self, mu, mask, spks, cond, n_timesteps=10, temperature=1.0):
        z = self.rand_noise[:, :, :mu.size(2)] * temperature
        t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
        # cosine scheduling
        t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
        return self.solve_euler(z, t_span, mu, mask, spks, cond)

    def solve_euler_chunk(self, 
                          x:torch.Tensor, 
                          t_span:torch.Tensor, 
                          mu:torch.Tensor, 
                          spks:torch.Tensor, 
                          cond:torch.Tensor, 
                          cnn_cache:torch.Tensor=None,
                          att_cache:torch.Tensor=None,
                          ):
        """
        Fixed euler solver for ODEs.
        Args:
            x (torch.Tensor): random noise
            t_span (torch.Tensor): n_timesteps interpolated
                shape: (n_timesteps + 1,)
            mu (torch.Tensor): output of encoder
                shape: (batch_size, n_feats, mel_timesteps)
            mask (torch.Tensor): output_mask
                shape: (batch_size, 1, mel_timesteps)
            spks (torch.Tensor, optional): speaker ids. Defaults to None.
                shape: (batch_size, spk_emb_dim)
            cond: Not used but kept for future purposes
            cnn_cache: shape (n_time, depth, b, c1+c2, 2)
            att_cache: shape (n_time, depth, b, nh, t, c * 2)
        """
        assert self.inference_cfg_rate > 0, 'cfg rate should be > 0'
        
        t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
        t = t.unsqueeze(dim=0)  # (b,)

        # setup initial cache
        if cnn_cache is None:
            cnn_cache = [None for _ in range(len(t_span)-1)]
        if att_cache is None:
            att_cache = [None for _ in range(len(t_span)-1)]
        # next chunk's cache at each timestep

        if att_cache[0] is not None:
            last_att_len = att_cache.shape[4]
        else:
            last_att_len = 0

        # constant during denoising
        mu_in = torch.cat([mu, torch.zeros_like(mu)], dim=0)
        spks_in = torch.cat([spks, torch.zeros_like(spks)], dim=0)
        cond_in = torch.cat([cond, torch.zeros_like(cond)], dim=0)
        for step in range(1, len(t_span)):
            # torch.cuda.memory._record_memory_history(max_entries=100000)
            # torch.cuda.memory._record_memory_history(max_entries=100000)
            this_att_cache = att_cache[step-1]
            this_cnn_cache = cnn_cache[step-1]

            dphi_dt, this_new_cnn_cache, this_new_att_cache = self.estimator.forward_chunk(
                x = x.repeat(2, 1, 1),
                mu = mu_in,
                t = t.repeat(2),
                spks = spks_in,
                cond = cond_in,
                cnn_cache = this_cnn_cache,
                att_cache = this_att_cache,
            )
            dphi_dt, cfg_dphi_dt = dphi_dt.chunk(2, dim=0)
            dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
            x = x + dt * dphi_dt
            t = t + dt
            if step < len(t_span) - 1:
                dt = t_span[step + 1] - t

            self.cnn_cache_buffer[step-1] = this_new_cnn_cache
            self.att_cache_buffer[step-1][:, :, :, :x.shape[2]+last_att_len, :] = this_new_att_cache
        
        cnn_cache = self.cnn_cache_buffer
        att_cache = self.att_cache_buffer[:, :, :, :, :x.shape[2]+last_att_len, :]
        return x, cnn_cache, att_cache
    
    @torch.inference_mode()
    def forward_chunk(self, 
                      mu:torch.Tensor, 
                      spks:torch.Tensor, 
                      cond:torch.Tensor,
                      n_timesteps:int=10, 
                      temperature:float=1.0, 
                      cnn_cache:torch.Tensor=None,
                      att_cache:torch.Tensor=None,
                      ):
        """
        Args:
            mu(torch.Tensor): shape (b, c, t)
            spks(torch.Tensor): shape (b, 192)
            cond(torch.Tensor): shape (b, c, t)
            cnn_cache: shape (n_time, depth, b, c1+c2, 2)
            att_cache: shape (n_time, depth, b, nh, t, c * 2)
        """
        # get offset from att_cache
        offset = att_cache.shape[4] if att_cache is not None else 0
        z = self.rand_noise[:, :, offset:offset+mu.size(2)] * temperature
        t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
        # cosine scheduling
        t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
        x, new_cnn_cache, new_att_cache = self.solve_euler_chunk(
            x=z,
            t_span=t_span,
            mu=mu,
            spks=spks,
            cond=cond,
            att_cache=att_cache,
            cnn_cache=cnn_cache,
        )
        return x, new_cnn_cache, new_att_cache