Spaces:
Running
on
Zero
Running
on
Zero
| from dataclasses import dataclass | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from flashcosyvoice.modules.flow_components.estimator import \ | |
| CausalConditionalDecoder | |
| from flashcosyvoice.modules.flow_components.upsample_encoder import ( | |
| UpsampleConformerEncoder, make_pad_mask) | |
| # TODO(xcsong): make it configurable | |
| class CfmParams: | |
| sigma_min: float = 1e-6 | |
| solver: str = "euler" | |
| t_scheduler: str = "cosine" | |
| training_cfg_rate: float = 0.2 | |
| inference_cfg_rate: float = 0.7 | |
| class CausalConditionalCFM(torch.nn.Module): | |
| def __init__(self, in_channels=320, cfm_params=CfmParams(), n_spks=1, spk_emb_dim=80, estimator: torch.nn.Module = None): | |
| super().__init__() | |
| self.n_feats = in_channels | |
| self.n_spks = n_spks | |
| self.spk_emb_dim = spk_emb_dim | |
| self.solver = cfm_params.solver | |
| if hasattr(cfm_params, "sigma_min"): | |
| self.sigma_min = cfm_params.sigma_min | |
| else: | |
| self.sigma_min = 1e-4 | |
| self.t_scheduler = cfm_params.t_scheduler | |
| self.training_cfg_rate = cfm_params.training_cfg_rate | |
| self.inference_cfg_rate = cfm_params.inference_cfg_rate | |
| in_channels = in_channels + (spk_emb_dim if n_spks > 0 else 0) | |
| # Just change the architecture of the estimator here | |
| self.estimator = CausalConditionalDecoder() if estimator is None else estimator | |
| def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, streaming=False): | |
| """Forward diffusion | |
| Args: | |
| mu (torch.Tensor): output of encoder | |
| shape: (batch_size, n_feats, mel_timesteps) | |
| mask (torch.Tensor): output_mask | |
| shape: (batch_size, 1, mel_timesteps) | |
| n_timesteps (int): number of diffusion steps | |
| temperature (float, optional): temperature for scaling noise. Defaults to 1.0. | |
| spks (torch.Tensor, optional): speaker ids. Defaults to None. | |
| shape: (batch_size, spk_emb_dim) | |
| cond: Not used but kept for future purposes | |
| Returns: | |
| sample: generated mel-spectrogram | |
| shape: (batch_size, n_feats, mel_timesteps) | |
| """ | |
| z = torch.randn_like(mu).to(mu.device).to(mu.dtype) * temperature | |
| # fix prompt and overlap part mu and z | |
| t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) | |
| if self.t_scheduler == 'cosine': | |
| t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) | |
| return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, streaming=streaming), None | |
| def solve_euler(self, x, t_span, mu, mask, spks, cond, streaming=False): | |
| """ | |
| Fixed euler solver for ODEs. | |
| Args: | |
| x (torch.Tensor): random noise | |
| t_span (torch.Tensor): n_timesteps interpolated | |
| shape: (n_timesteps + 1,) | |
| mu (torch.Tensor): output of encoder | |
| shape: (batch_size, n_feats, mel_timesteps) | |
| mask (torch.Tensor): output_mask | |
| shape: (batch_size, 1, mel_timesteps) | |
| spks (torch.Tensor, optional): speaker ids. Defaults to None. | |
| shape: (batch_size, spk_emb_dim) | |
| cond: Not used but kept for future purposes | |
| """ | |
| batch_size = x.size(0) | |
| t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] | |
| # I am storing this because I can later plot it by putting a debugger here and saving it to a file | |
| # Or in future might add like a return_all_steps flag | |
| sol = [] | |
| # Do not use concat, it may cause memory format changed and trt infer with wrong results! | |
| # Create tensors with double batch size for CFG (conditional + unconditional) | |
| x_in = torch.zeros([batch_size * 2, x.size(1), x.size(2)], device=x.device, dtype=x.dtype) | |
| mask_in = torch.zeros([batch_size * 2, mask.size(1), mask.size(2)], device=x.device, dtype=x.dtype) | |
| mu_in = torch.zeros([batch_size * 2, mu.size(1), mu.size(2)], device=x.device, dtype=x.dtype) | |
| t_in = torch.zeros([batch_size * 2], device=x.device, dtype=x.dtype) | |
| spks_in = torch.zeros([batch_size * 2, spks.size(1)], device=x.device, dtype=x.dtype) | |
| cond_in = torch.zeros([batch_size * 2, cond.size(1), cond.size(2)], device=x.device, dtype=x.dtype) | |
| for step in range(1, len(t_span)): | |
| # Classifier-Free Guidance inference introduced in VoiceBox | |
| # Copy conditional and unconditional input | |
| x_in[:batch_size] = x | |
| x_in[batch_size:] = x | |
| mask_in[:batch_size] = mask | |
| mask_in[batch_size:] = mask | |
| mu_in[:batch_size] = mu | |
| # Unconditional part remains 0 | |
| t_in.fill_(t) | |
| spks_in[:batch_size] = spks | |
| cond_in[:batch_size] = cond | |
| dphi_dt = self.estimator( | |
| x_in, mask_in, | |
| mu_in, t_in, | |
| spks_in, | |
| cond_in, | |
| streaming | |
| ) | |
| dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [batch_size, batch_size], dim=0) | |
| dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt) | |
| x = x + dt * dphi_dt | |
| t = t + dt | |
| sol.append(x) | |
| if step < len(t_span) - 1: | |
| dt = t_span[step + 1] - t | |
| return sol[-1].float() | |
| class CausalMaskedDiffWithXvec(torch.nn.Module): | |
| def __init__( | |
| self, | |
| input_size: int = 512, | |
| output_size: int = 80, | |
| spk_embed_dim: int = 192, | |
| output_type: str = "mel", | |
| vocab_size: int = 6561, | |
| input_frame_rate: int = 25, | |
| token_mel_ratio: int = 2, | |
| pre_lookahead_len: int = 3, | |
| encoder: torch.nn.Module = None, | |
| decoder: torch.nn.Module = None, | |
| ): | |
| super().__init__() | |
| self.input_size = input_size | |
| self.output_size = output_size | |
| self.vocab_size = vocab_size | |
| self.output_type = output_type | |
| self.input_frame_rate = input_frame_rate | |
| self.input_embedding = nn.Embedding(vocab_size, input_size) | |
| self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size) | |
| self.encoder = UpsampleConformerEncoder() if encoder is None else encoder | |
| self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size) | |
| self.decoder = CausalConditionalCFM() if decoder is None else decoder | |
| self.token_mel_ratio = token_mel_ratio | |
| self.pre_lookahead_len = pre_lookahead_len | |
| def forward(self, | |
| token, | |
| token_len, | |
| prompt_feat, | |
| prompt_feat_len, | |
| embedding, | |
| streaming, | |
| finalize): | |
| # xvec projection | |
| embedding = F.normalize(embedding, dim=1) | |
| embedding = self.spk_embed_affine_layer(embedding) | |
| # concat text and prompt_text | |
| mask = (~make_pad_mask(token_len, max_len=token.shape[1])).unsqueeze(-1).to(embedding) | |
| token = self.input_embedding(torch.clamp(token, min=0)) * mask | |
| # text encode | |
| if finalize is True: | |
| h, h_lengths = self.encoder(token, token_len, streaming=streaming) | |
| else: | |
| token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:] | |
| h, h_lengths = self.encoder(token, token_len, context=context, streaming=streaming) | |
| h = self.encoder_proj(h) | |
| # get conditions | |
| conds = torch.zeros_like(h, device=token.device) | |
| for i, j in enumerate(prompt_feat_len): | |
| conds[i, :j] = prompt_feat[i, :j] | |
| conds = conds.transpose(1, 2) | |
| h_lengths = h_lengths.sum(dim=-1).squeeze(dim=1) | |
| mask = (~make_pad_mask(h_lengths, max_len=h.shape[1])).to(h) | |
| feat, _ = self.decoder( | |
| mu=h.transpose(1, 2).contiguous(), | |
| mask=mask.unsqueeze(1), | |
| spks=embedding, | |
| cond=conds, | |
| n_timesteps=10, | |
| streaming=streaming | |
| ) # [B, num_mels, T] | |
| return feat.float(), h_lengths | |