Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import torch.nn as nn | |
| from mamba_ssm.models.mixer_seq_simple import create_block | |
| from mamba_ssm.ops.triton.layer_norm import layer_norm_fn | |
| from mamba_ssm.utils.generation import InferenceParams | |
| from zonos.config import BackboneConfig | |
| class ZonosBackbone(nn.Module): | |
| def __init__(self, config: BackboneConfig): | |
| super().__init__() | |
| self.config = config | |
| self.layers = nn.ModuleList( | |
| [ | |
| create_block( | |
| d_model=config.d_model, | |
| d_intermediate=config.d_intermediate | |
| if (i not in config.attn_layer_idx) | |
| else config.attn_mlp_d_intermediate, | |
| ssm_cfg=config.ssm_cfg, | |
| layer_idx=i, | |
| attn_layer_idx=config.attn_layer_idx, | |
| attn_cfg=config.attn_cfg, | |
| norm_epsilon=config.norm_epsilon, | |
| residual_in_fp32=config.residual_in_fp32, | |
| fused_add_norm=True, | |
| rms_norm=config.rms_norm, | |
| ) | |
| for i in range(config.n_layer) | |
| ] | |
| ) | |
| self.norm_f = nn.LayerNorm(config.d_model, eps=config.norm_epsilon) | |
| def forward(self, hidden_states: torch.Tensor, inference_params: InferenceParams | None = None): | |
| residual = None | |
| for layer in self.layers: | |
| hidden_states, residual = layer(hidden_states, residual, inference_params) | |
| return layer_norm_fn( | |
| hidden_states, | |
| self.norm_f.weight, | |
| self.norm_f.bias, | |
| residual, | |
| eps=self.norm_f.eps, | |
| residual_in_fp32=self.config.residual_in_fp32, | |
| is_rms_norm=self.config.rms_norm, | |
| ) | |