Update app.py
Browse files
app.py
CHANGED
|
@@ -15,7 +15,7 @@ current_logs = []
|
|
| 15 |
|
| 16 |
def log(msg):
|
| 17 |
"""追加并打印日志信息"""
|
| 18 |
-
|
| 19 |
current_logs.append(msg)
|
| 20 |
return "\n".join(current_logs)
|
| 21 |
|
|
@@ -113,12 +113,19 @@ def download_and_merge_model(base_model_name, lora_model_name, output_dir, devic
|
|
| 113 |
5. 求 base 与 adapter tokenizer 的词表并取并集,扩展 tokenizer
|
| 114 |
6. 调整合并模型嵌入层尺寸并保存
|
| 115 |
"""
|
|
|
|
| 116 |
model = AutoModelForCausalLM.from_pretrained(base_model_name, low_cpu_mem_usage=True)
|
|
|
|
| 117 |
adapter_tokenizer = AutoTokenizer.from_pretrained(lora_model_name)
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
| 120 |
peft_model = PeftModel.from_pretrained(model, lora_model_name, low_cpu_mem_usage=True)
|
|
|
|
| 121 |
model = peft_model.merge_and_unload()
|
|
|
|
| 122 |
model.save_pretrained(output_dir)
|
| 123 |
adapter_tokenizer.save_pretrained(output_dir)
|
| 124 |
return output_dir
|
|
@@ -153,7 +160,7 @@ def clone_llamacpp_and_download_build():
|
|
| 153 |
|
| 154 |
|
| 155 |
@timeit
|
| 156 |
-
def
|
| 157 |
"""
|
| 158 |
利用 llama-cpp-python 对模型进行量化,并上传到 Hugging Face Hub。
|
| 159 |
使用的量化预设:
|
|
@@ -176,37 +183,26 @@ def quantize_and_push_model(model_path, repo_id, quant_method=None):
|
|
| 176 |
temp_gguf_path = os.path.join(model_output_dir, f"{repo_id}-f16.gguf")
|
| 177 |
|
| 178 |
if not os.path.exists(temp_gguf_path):
|
| 179 |
-
|
| 180 |
convert_script = os.path.join(llamacpp_dir, "convert_hf_to_gguf.py")
|
| 181 |
convert_cmd = f"python {convert_script} {model_path} --outfile {temp_gguf_path}"
|
| 182 |
os.system(convert_cmd)
|
| 183 |
else:
|
| 184 |
-
|
| 185 |
|
| 186 |
# 最终文件保存在 model_output 目录下
|
| 187 |
final_path = os.path.join(model_output_dir, f"{repo_id}-{quant_method}.gguf")
|
| 188 |
-
|
| 189 |
quantize_bin = os.path.join(llamacpp_dir, "build", "bin", "llama-quantize")
|
| 190 |
quant_cmd = f"{quantize_bin} {temp_gguf_path} {final_path} {quant_method}"
|
| 191 |
|
| 192 |
if not os.path.exists(final_path):
|
| 193 |
os.system(quant_cmd)
|
| 194 |
else:
|
| 195 |
-
|
| 196 |
return None
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
api = HfApi()
|
| 200 |
-
future = api.upload_file(
|
| 201 |
-
file_path=final_path,
|
| 202 |
-
repo_id=repo_id,
|
| 203 |
-
repo_type="model",
|
| 204 |
-
commit_message=f"Quantized {quant_method}",
|
| 205 |
-
commit_description=f"Quantized {model_path} with {quant_method}, using llama.cpp -> {quant_cmd} ",
|
| 206 |
-
run_as_future=True
|
| 207 |
-
)
|
| 208 |
-
log(f"量化模型({quant_method})上传已安排;已获得 future 对象。")
|
| 209 |
-
return future
|
| 210 |
|
| 211 |
@timeit
|
| 212 |
def process_model(base_model_name, lora_model_name, repo_name, quant_methods, hf_token):
|
|
@@ -225,6 +221,10 @@ def process_model(base_model_name, lora_model_name, repo_name, quant_methods, hf
|
|
| 225 |
os.environ["HF_TOKEN"] = hf_token
|
| 226 |
api = HfApi(token=hf_token)
|
| 227 |
username = api.whoami()["name"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
if repo_name.strip().lower() == "auto":
|
| 229 |
repo_name = f"{username}/{base_model_name.split('/')[-1]}_{lora_model_name.split('/')[-1]}"
|
| 230 |
|
|
@@ -235,35 +235,18 @@ def process_model(base_model_name, lora_model_name, repo_name, quant_methods, hf
|
|
| 235 |
log("Starting model merge process...")
|
| 236 |
model_path = download_and_merge_model(base_model_name, lora_model_name, output_dir, device)
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
folder_path=model_path,
|
| 242 |
repo_id=repo_name,
|
| 243 |
repo_type="model",
|
| 244 |
num_workers=4,
|
| 245 |
-
run_as_future=True
|
| 246 |
)
|
| 247 |
-
|
| 248 |
-
# 启动量化任务,分别使用四种模式:
|
| 249 |
-
futures = []
|
| 250 |
-
for quant_method in quant_methods:
|
| 251 |
-
future = quantize_and_push_model(f"{output_dir}/model.gguf", repo_name, bits=8, quant_method=quant_method)
|
| 252 |
-
futures.append(future)
|
| 253 |
-
log("Background uploads are in progress; performing other tasks if needed...")
|
| 254 |
-
|
| 255 |
-
log("Waiting for merged model upload to complete...")
|
| 256 |
-
future_merge.result()
|
| 257 |
-
log("Merged model upload completed.")
|
| 258 |
-
|
| 259 |
-
for future in futures:
|
| 260 |
-
future.result()
|
| 261 |
-
log(f"{future.result().__name__} completed.")
|
| 262 |
-
|
| 263 |
-
final_message = f"All done! Model uploaded to: https://huggingface.co/{repo_name}"
|
| 264 |
-
log(final_message)
|
| 265 |
-
os.environ.pop("HF_TOKEN", None)
|
| 266 |
-
log("HF_TOKEN removed from environment variables.")
|
| 267 |
return "\n".join(current_logs)
|
| 268 |
except Exception as e:
|
| 269 |
error_message = f"Error during processing: {e}"
|
|
@@ -285,7 +268,7 @@ def create_ui():
|
|
| 285 |
base_model = gr.Textbox(
|
| 286 |
label="Base Model Path",
|
| 287 |
placeholder="e.g., Qwen/Qwen2.5-14B-Instruct",
|
| 288 |
-
value="
|
| 289 |
)
|
| 290 |
lora_model = gr.Textbox(
|
| 291 |
label="LoRA Model Path",
|
|
|
|
| 15 |
|
| 16 |
def log(msg):
|
| 17 |
"""追加并打印日志信息"""
|
| 18 |
+
log(msg)
|
| 19 |
current_logs.append(msg)
|
| 20 |
return "\n".join(current_logs)
|
| 21 |
|
|
|
|
| 113 |
5. 求 base 与 adapter tokenizer 的词表并取并集,扩展 tokenizer
|
| 114 |
6. 调整合并模型嵌入层尺寸并保存
|
| 115 |
"""
|
| 116 |
+
log("Loading base model...")
|
| 117 |
model = AutoModelForCausalLM.from_pretrained(base_model_name, low_cpu_mem_usage=True)
|
| 118 |
+
log("Loading adapter tokenizer...")
|
| 119 |
adapter_tokenizer = AutoTokenizer.from_pretrained(lora_model_name)
|
| 120 |
+
if adapter_tokenizer.pad_token != model.config.pad_token:
|
| 121 |
+
log("Resizing token embeddings...")
|
| 122 |
+
added_tokens_decoder = adapter_tokenizer.added_tokens_decoder
|
| 123 |
+
model.resize_token_embeddings(adapter_tokenizer.vocab_size + len(added_tokens_decoder))
|
| 124 |
+
log("Loading LoRA adapter...")
|
| 125 |
peft_model = PeftModel.from_pretrained(model, lora_model_name, low_cpu_mem_usage=True)
|
| 126 |
+
log("Merging and unloading model...")
|
| 127 |
model = peft_model.merge_and_unload()
|
| 128 |
+
log("Saving model...")
|
| 129 |
model.save_pretrained(output_dir)
|
| 130 |
adapter_tokenizer.save_pretrained(output_dir)
|
| 131 |
return output_dir
|
|
|
|
| 160 |
|
| 161 |
|
| 162 |
@timeit
|
| 163 |
+
def quantize(model_path, repo_id, quant_method=None):
|
| 164 |
"""
|
| 165 |
利用 llama-cpp-python 对模型进行量化,并上传到 Hugging Face Hub。
|
| 166 |
使用的量化预设:
|
|
|
|
| 183 |
temp_gguf_path = os.path.join(model_output_dir, f"{repo_id}-f16.gguf")
|
| 184 |
|
| 185 |
if not os.path.exists(temp_gguf_path):
|
| 186 |
+
log(f"正在将模型转换为GGML格式")
|
| 187 |
convert_script = os.path.join(llamacpp_dir, "convert_hf_to_gguf.py")
|
| 188 |
convert_cmd = f"python {convert_script} {model_path} --outfile {temp_gguf_path}"
|
| 189 |
os.system(convert_cmd)
|
| 190 |
else:
|
| 191 |
+
log(f"GGML中间文件已存在,跳过转换")
|
| 192 |
|
| 193 |
# 最终文件保存在 model_output 目录下
|
| 194 |
final_path = os.path.join(model_output_dir, f"{repo_id}-{quant_method}.gguf")
|
| 195 |
+
log(f"正在进行{quant_method}量化")
|
| 196 |
quantize_bin = os.path.join(llamacpp_dir, "build", "bin", "llama-quantize")
|
| 197 |
quant_cmd = f"{quantize_bin} {temp_gguf_path} {final_path} {quant_method}"
|
| 198 |
|
| 199 |
if not os.path.exists(final_path):
|
| 200 |
os.system(quant_cmd)
|
| 201 |
else:
|
| 202 |
+
log(f"{quant_method}量化文件已存在,跳过量化")
|
| 203 |
return None
|
| 204 |
+
|
| 205 |
+
return final_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
@timeit
|
| 208 |
def process_model(base_model_name, lora_model_name, repo_name, quant_methods, hf_token):
|
|
|
|
| 221 |
os.environ["HF_TOKEN"] = hf_token
|
| 222 |
api = HfApi(token=hf_token)
|
| 223 |
username = api.whoami()["name"]
|
| 224 |
+
|
| 225 |
+
if base_model_name.strip().lower() == "auto":
|
| 226 |
+
adapter_config = PeftConfig.from_pretrained(lora_model_name)
|
| 227 |
+
base_model_name = adapter_config.base_model_name_or_path
|
| 228 |
if repo_name.strip().lower() == "auto":
|
| 229 |
repo_name = f"{username}/{base_model_name.split('/')[-1]}_{lora_model_name.split('/')[-1]}"
|
| 230 |
|
|
|
|
| 235 |
log("Starting model merge process...")
|
| 236 |
model_path = download_and_merge_model(base_model_name, lora_model_name, output_dir, device)
|
| 237 |
|
| 238 |
+
|
| 239 |
+
# 量化模型
|
| 240 |
+
for quant_method in quant_methods:
|
| 241 |
+
quantize(f"{output_dir}/model.gguf", repo_name, bits=8, quant_method=quant_method)
|
| 242 |
+
|
| 243 |
+
# 上传合并后的模型和量化模型
|
| 244 |
+
api.upload_large_folder(
|
| 245 |
folder_path=model_path,
|
| 246 |
repo_id=repo_name,
|
| 247 |
repo_type="model",
|
| 248 |
num_workers=4,
|
|
|
|
| 249 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
return "\n".join(current_logs)
|
| 251 |
except Exception as e:
|
| 252 |
error_message = f"Error during processing: {e}"
|
|
|
|
| 268 |
base_model = gr.Textbox(
|
| 269 |
label="Base Model Path",
|
| 270 |
placeholder="e.g., Qwen/Qwen2.5-14B-Instruct",
|
| 271 |
+
value="Auto"
|
| 272 |
)
|
| 273 |
lora_model = gr.Textbox(
|
| 274 |
label="LoRA Model Path",
|