Commit
·
260542b
1
Parent(s):
6e2ff33
init
Browse files- README.md +65 -1
- app.py +280 -50
- app.py.bk +64 -0
- requirements.txt +9 -1
README.md
CHANGED
|
@@ -11,4 +11,68 @@ license: mit
|
|
| 11 |
short_description: apply_lora_and_quantize
|
| 12 |
---
|
| 13 |
|
| 14 |
-
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
short_description: apply_lora_and_quantize
|
| 12 |
---
|
| 13 |
|
| 14 |
+
An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
|
| 15 |
+
|
| 16 |
+
# Model Converter for HuggingFace
|
| 17 |
+
|
| 18 |
+
A powerful tool for converting and quantizing Large Language Models (LLMs) with LoRA adapters.
|
| 19 |
+
|
| 20 |
+
## Features
|
| 21 |
+
|
| 22 |
+
- 🚀 Automatic system resource detection (CPU/GPU)
|
| 23 |
+
- 🔄 Merge base models with LoRA adapters
|
| 24 |
+
- 📊 Support for 4-bit and 8-bit quantization
|
| 25 |
+
- ☁️ Automatic upload to HuggingFace Hub
|
| 26 |
+
|
| 27 |
+
## Requirements
|
| 28 |
+
|
| 29 |
+
- Python 3.8+
|
| 30 |
+
- CUDA compatible GPU (optional, but recommended)
|
| 31 |
+
- HuggingFace account and token
|
| 32 |
+
|
| 33 |
+
## Installation
|
| 34 |
+
|
| 35 |
+
```bash
|
| 36 |
+
pip install -r requirements.txt
|
| 37 |
+
```
|
| 38 |
+
|
| 39 |
+
## Configuration
|
| 40 |
+
|
| 41 |
+
Create a `.env` file in the project root:
|
| 42 |
+
```
|
| 43 |
+
HF_TOKEN=your_huggingface_token
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## Usage
|
| 47 |
+
|
| 48 |
+
Run the script:
|
| 49 |
+
```bash
|
| 50 |
+
python space_convert.py
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
You will be prompted to enter:
|
| 54 |
+
1. Base model path (e.g., "Qwen/Qwen2.5-7B-Instruct")
|
| 55 |
+
2. LoRA model path
|
| 56 |
+
3. Target HuggingFace repository name
|
| 57 |
+
|
| 58 |
+
The script will:
|
| 59 |
+
1. Check available system resources
|
| 60 |
+
2. Choose the optimal device (GPU/CPU)
|
| 61 |
+
3. Merge the base model with LoRA
|
| 62 |
+
4. Create 8-bit and 4-bit quantized versions
|
| 63 |
+
5. Upload everything to HuggingFace
|
| 64 |
+
|
| 65 |
+
## Memory Requirements
|
| 66 |
+
|
| 67 |
+
- 7B models: ~16GB RAM/VRAM
|
| 68 |
+
- 14B models: ~32GB RAM/VRAM
|
| 69 |
+
- Additional disk space: 3x model size
|
| 70 |
+
|
| 71 |
+
## Note
|
| 72 |
+
|
| 73 |
+
The script automatically handles:
|
| 74 |
+
- Resource availability checks
|
| 75 |
+
- Device selection
|
| 76 |
+
- Error handling
|
| 77 |
+
- Progress tracking
|
| 78 |
+
- Model optimization
|
app.py
CHANGED
|
@@ -1,64 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
def
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import psutil
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
| 5 |
+
from peft import PeftModel, PeftConfig
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
from huggingface_hub import login, create_repo, HfApi
|
| 9 |
+
import subprocess
|
| 10 |
+
import math
|
| 11 |
+
from dotenv import load_dotenv
|
| 12 |
import gradio as gr
|
| 13 |
+
import threading
|
| 14 |
+
import queue
|
| 15 |
+
import time
|
| 16 |
|
| 17 |
+
# 创建一个队列用于存储日志消息
|
| 18 |
+
log_queue = queue.Queue()
|
| 19 |
+
current_logs = []
|
|
|
|
| 20 |
|
| 21 |
+
def log(msg):
|
| 22 |
+
"""统一的日志处理函数"""
|
| 23 |
+
print(msg)
|
| 24 |
+
current_logs.append(msg)
|
| 25 |
+
return "\n".join(current_logs)
|
| 26 |
|
| 27 |
+
def get_model_size_in_gb(model_name):
|
| 28 |
+
"""估算模型大小(以GB为单位)"""
|
| 29 |
+
try:
|
| 30 |
+
config = AutoConfig.from_pretrained(model_name)
|
| 31 |
+
num_params = config.num_parameters if hasattr(config, 'num_parameters') else None
|
| 32 |
+
|
| 33 |
+
if num_params is None:
|
| 34 |
+
# 手动计算参数量
|
| 35 |
+
if hasattr(config, 'num_hidden_layers') and hasattr(config, 'hidden_size'):
|
| 36 |
+
# 简单估算,可能不够准确
|
| 37 |
+
num_params = config.num_hidden_layers * config.hidden_size * config.hidden_size * 4
|
| 38 |
+
|
| 39 |
+
if num_params:
|
| 40 |
+
# 每个参数占用2字节(float16)
|
| 41 |
+
size_in_gb = (num_params * 2) / (1024 ** 3)
|
| 42 |
+
return size_in_gb
|
| 43 |
+
else:
|
| 44 |
+
# 如果无法计算,返回一个保守的估计
|
| 45 |
+
return 16 # 默认假设是7B模型
|
| 46 |
+
except Exception as e:
|
| 47 |
+
log(f"无法估算模型大小: {str(e)}")
|
| 48 |
+
return 16 # 默认返回16GB
|
| 49 |
|
| 50 |
+
def check_system_resources(model_name):
|
| 51 |
+
"""检查系统资源并决定使用什么设备"""
|
| 52 |
+
log("正在检查系统资源...")
|
| 53 |
+
|
| 54 |
+
# 获取系统内存信息
|
| 55 |
+
system_memory = psutil.virtual_memory()
|
| 56 |
+
total_memory_gb = system_memory.total / (1024 ** 3)
|
| 57 |
+
available_memory_gb = system_memory.available / (1024 ** 3)
|
| 58 |
+
|
| 59 |
+
log(f"系统总内存: {total_memory_gb:.1f}GB")
|
| 60 |
+
log(f"可用内存: {available_memory_gb:.1f}GB")
|
| 61 |
+
|
| 62 |
+
# 估算模型所需内存
|
| 63 |
+
model_size_gb = get_model_size_in_gb(model_name)
|
| 64 |
+
required_memory_gb = model_size_gb * 2.5 # 需要额外的内存用于计算
|
| 65 |
+
log(f"估计模型需要内存: {required_memory_gb:.1f}GB")
|
| 66 |
+
|
| 67 |
+
# 检查CUDA是否可用
|
| 68 |
+
if torch.cuda.is_available():
|
| 69 |
+
gpu_name = torch.cuda.get_device_name(0)
|
| 70 |
+
gpu_memory_gb = torch.cuda.get_device_properties(0).total_memory / (1024 ** 3)
|
| 71 |
+
log(f"发现GPU: {gpu_name}")
|
| 72 |
+
log(f"GPU显存: {gpu_memory_gb:.1f}GB")
|
| 73 |
+
|
| 74 |
+
if gpu_memory_gb >= required_memory_gb:
|
| 75 |
+
log("✅ GPU显存足够,将使用GPU进行转换")
|
| 76 |
+
return "cuda", gpu_memory_gb
|
| 77 |
+
else:
|
| 78 |
+
log(f"⚠️ GPU显存不足 (需要 {required_memory_gb:.1f}GB, 实际 {gpu_memory_gb:.1f}GB)")
|
| 79 |
+
else:
|
| 80 |
+
log("❌ 未检测到可用的GPU")
|
| 81 |
+
|
| 82 |
+
# 检查CPU内存是否足够
|
| 83 |
+
if available_memory_gb >= required_memory_gb:
|
| 84 |
+
log("✅ CPU内存足够,将使用CPU进行转换")
|
| 85 |
+
return "cpu", available_memory_gb
|
| 86 |
+
else:
|
| 87 |
+
raise MemoryError(f"❌ 系统内存不足 (需要 {required_memory_gb:.1f}GB, 可用 {available_memory_gb:.1f}GB)")
|
| 88 |
|
| 89 |
+
def setup_environment(model_name):
|
| 90 |
+
"""设置环境并返回设备信息"""
|
| 91 |
+
load_dotenv()
|
| 92 |
+
hf_token = os.getenv('HF_TOKEN')
|
| 93 |
+
if not hf_token:
|
| 94 |
+
raise ValueError("请在环境变量中设置HF_TOKEN")
|
| 95 |
+
login(hf_token)
|
| 96 |
+
|
| 97 |
+
# 检查系统资源并决定使用什么设备
|
| 98 |
+
device, available_memory = check_system_resources(model_name)
|
| 99 |
+
return device
|
| 100 |
|
| 101 |
+
def create_hf_repo(repo_name, private=True):
|
| 102 |
+
"""创建HuggingFace仓库"""
|
| 103 |
+
try:
|
| 104 |
+
repo_url = create_repo(repo_name, private=private)
|
| 105 |
+
log(f"创建仓库成功: {repo_url}")
|
| 106 |
+
return repo_url
|
| 107 |
+
except Exception as e:
|
| 108 |
+
log(f"创建仓库失败: {str(e)}")
|
| 109 |
+
raise
|
| 110 |
|
| 111 |
+
def download_and_merge_model(base_model_name, lora_model_name, output_dir, device):
|
| 112 |
+
log(f"正在加��基础模型: {base_model_name}")
|
| 113 |
+
|
| 114 |
+
try:
|
| 115 |
+
# 先加载原始模型
|
| 116 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 117 |
+
base_model_name,
|
| 118 |
+
torch_dtype=torch.float16,
|
| 119 |
+
device_map={"": device}
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# 加载tokenizer
|
| 123 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
| 124 |
+
|
| 125 |
+
log(f"正在加载LoRA模型: {lora_model_name}")
|
| 126 |
+
log("基础模型配置:" + str(base_model.config))
|
| 127 |
+
|
| 128 |
+
# 加载adapter配置
|
| 129 |
+
adapter_config = PeftConfig.from_pretrained(lora_model_name)
|
| 130 |
+
log("Adapter配置:" + str(adapter_config))
|
| 131 |
+
|
| 132 |
+
model = PeftModel.from_pretrained(base_model, lora_model_name)
|
| 133 |
+
log("正在合并LoRA权重")
|
| 134 |
+
model = model.merge_and_unload()
|
| 135 |
|
| 136 |
+
# 创建输出目录
|
| 137 |
+
output_path = Path(output_dir)
|
| 138 |
+
output_path.mkdir(parents=True, exist_ok=True)
|
| 139 |
|
| 140 |
+
# 保存合并后的模型
|
| 141 |
+
log(f"正在保存合并后的模型到: {output_dir}")
|
| 142 |
+
model.save_pretrained(output_dir)
|
| 143 |
+
tokenizer.save_pretrained(output_dir)
|
| 144 |
+
|
| 145 |
+
return output_dir
|
| 146 |
+
|
| 147 |
+
except Exception as e:
|
| 148 |
+
log(f"错误: {str(e)}")
|
| 149 |
+
log(f"错误类型: {type(e)}")
|
| 150 |
+
import traceback
|
| 151 |
+
log("详细错误信息:")
|
| 152 |
+
log(traceback.format_exc())
|
| 153 |
+
raise
|
| 154 |
|
| 155 |
+
def quantize_and_push_model(model_path, repo_id, bits=8):
|
| 156 |
+
"""量化模型并推送到HuggingFace"""
|
| 157 |
+
try:
|
| 158 |
+
from optimum.bettertransformer import BetterTransformer
|
| 159 |
+
from transformers import AutoModelForCausalLM
|
| 160 |
+
|
| 161 |
+
log(f"正在加载模型用于{bits}位量化...")
|
| 162 |
+
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 163 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 164 |
+
|
| 165 |
+
# 转换为BetterTransformer格式
|
| 166 |
+
model = BetterTransformer.transform(model)
|
| 167 |
+
|
| 168 |
+
# 量化
|
| 169 |
+
if bits == 8:
|
| 170 |
+
from transformers import BitsAndBytesConfig
|
| 171 |
+
quantization_config = BitsAndBytesConfig(
|
| 172 |
+
load_in_8bit=True,
|
| 173 |
+
llm_int8_threshold=6.0
|
| 174 |
+
)
|
| 175 |
+
elif bits == 4:
|
| 176 |
+
from transformers import BitsAndBytesConfig
|
| 177 |
+
quantization_config = BitsAndBytesConfig(
|
| 178 |
+
load_in_4bit=True,
|
| 179 |
+
bnb_4bit_compute_dtype=torch.float16,
|
| 180 |
+
bnb_4bit_quant_type="nf4"
|
| 181 |
+
)
|
| 182 |
+
else:
|
| 183 |
+
raise ValueError(f"不支持的量化位数: {bits}")
|
| 184 |
+
|
| 185 |
+
# 保存量化后的模型
|
| 186 |
+
quantized_model_path = f"{model_path}_q{bits}"
|
| 187 |
+
model.save_pretrained(
|
| 188 |
+
quantized_model_path,
|
| 189 |
+
quantization_config=quantization_config
|
| 190 |
+
)
|
| 191 |
+
tokenizer.save_pretrained(quantized_model_path)
|
| 192 |
+
|
| 193 |
+
# 推送到HuggingFace
|
| 194 |
+
log(f"正在将{bits}位量化模型推送到HuggingFace...")
|
| 195 |
+
api = HfApi()
|
| 196 |
+
api.upload_folder(
|
| 197 |
+
folder_path=quantized_model_path,
|
| 198 |
+
repo_id=repo_id,
|
| 199 |
+
repo_type="model"
|
| 200 |
+
)
|
| 201 |
+
log(f"{bits}位量化模型上传完成")
|
| 202 |
+
|
| 203 |
+
except Exception as e:
|
| 204 |
+
log(f"量化或上传过程中出错: {str(e)}")
|
| 205 |
+
raise
|
| 206 |
|
| 207 |
+
def process_model(base_model, lora_model, repo_name, progress=gr.Progress()):
|
| 208 |
+
"""处理模型的主函数,用于Gradio界面"""
|
| 209 |
+
try:
|
| 210 |
+
# 清空之前的日志
|
| 211 |
+
current_logs.clear()
|
| 212 |
+
|
| 213 |
+
# 设置环境和检查资源
|
| 214 |
+
device = setup_environment(base_model)
|
| 215 |
+
|
| 216 |
+
# 创建HuggingFace仓库
|
| 217 |
+
repo_url = create_hf_repo(repo_name)
|
| 218 |
+
|
| 219 |
+
# 设置输出目录
|
| 220 |
+
output_dir = os.path.join(".", "output", repo_name)
|
| 221 |
+
|
| 222 |
+
progress(0.1, desc="开始模型转换流程...")
|
| 223 |
+
# 下载并合并模型
|
| 224 |
+
model_path = download_and_merge_model(base_model, lora_model, output_dir, device)
|
| 225 |
+
|
| 226 |
+
progress(0.4, desc="开始8位量化...")
|
| 227 |
+
# 量化并上传模型
|
| 228 |
+
quantize_and_push_model(model_path, repo_name, bits=8)
|
| 229 |
+
|
| 230 |
+
progress(0.7, desc="开始4位量化...")
|
| 231 |
+
quantize_and_push_model(model_path, repo_name, bits=4)
|
| 232 |
+
|
| 233 |
+
final_message = f"全部完成!模型已上传至: https://huggingface.co/{repo_name}"
|
| 234 |
+
log(final_message)
|
| 235 |
+
progress(1.0, desc="处理完成")
|
| 236 |
+
|
| 237 |
+
return "\n".join(current_logs)
|
| 238 |
+
except Exception as e:
|
| 239 |
+
error_message = f"处理过程中出错: {str(e)}"
|
| 240 |
+
log(error_message)
|
| 241 |
+
return "\n".join(current_logs)
|
| 242 |
+
|
| 243 |
+
def create_ui():
|
| 244 |
+
"""创建Gradio界面"""
|
| 245 |
+
with gr.Blocks(title="模型转换工具") as app:
|
| 246 |
+
gr.Markdown("""
|
| 247 |
+
# 🤗 模型转换与量化工具
|
| 248 |
+
|
| 249 |
+
这个工具可以帮助你:
|
| 250 |
+
1. 合并基础模型和LoRA适配器
|
| 251 |
+
2. 创建4位和8位量化版本
|
| 252 |
+
3. 自动上传到HuggingFace Hub
|
| 253 |
+
""")
|
| 254 |
+
|
| 255 |
+
with gr.Row():
|
| 256 |
+
with gr.Column():
|
| 257 |
+
base_model = gr.Textbox(
|
| 258 |
+
label="基础模型路径",
|
| 259 |
+
placeholder="例如: Qwen/Qwen2.5-7B-Instruct",
|
| 260 |
+
value="Qwen/Qwen2.5-7B-Instruct"
|
| 261 |
+
)
|
| 262 |
+
lora_model = gr.Textbox(
|
| 263 |
+
label="LoRA模型路径",
|
| 264 |
+
placeholder="输入你的LoRA模型路径"
|
| 265 |
+
)
|
| 266 |
+
repo_name = gr.Textbox(
|
| 267 |
+
label="HuggingFace仓库名称",
|
| 268 |
+
placeholder="输入要创建的仓库名称"
|
| 269 |
+
)
|
| 270 |
+
convert_btn = gr.Button("开始转换", variant="primary")
|
| 271 |
+
|
| 272 |
+
with gr.Column():
|
| 273 |
+
output = gr.TextArea(
|
| 274 |
+
label="处理日志",
|
| 275 |
+
placeholder="处理日志将在这里显示...",
|
| 276 |
+
interactive=False,
|
| 277 |
+
autoscroll=True,
|
| 278 |
+
lines=20
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
# 设置事件处理
|
| 282 |
+
convert_btn.click(
|
| 283 |
+
fn=process_model,
|
| 284 |
+
inputs=[base_model, lora_model, repo_name],
|
| 285 |
+
outputs=output
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
return app
|
| 289 |
|
| 290 |
if __name__ == "__main__":
|
| 291 |
+
# 创建并启动Gradio界面
|
| 292 |
+
app = create_ui()
|
| 293 |
+
app.queue()
|
| 294 |
+
app.launch()
|
app.py.bk
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from huggingface_hub import InferenceClient
|
| 3 |
+
|
| 4 |
+
"""
|
| 5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
+
"""
|
| 7 |
+
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def respond(
|
| 11 |
+
message,
|
| 12 |
+
history: list[tuple[str, str]],
|
| 13 |
+
system_message,
|
| 14 |
+
max_tokens,
|
| 15 |
+
temperature,
|
| 16 |
+
top_p,
|
| 17 |
+
):
|
| 18 |
+
messages = [{"role": "system", "content": system_message}]
|
| 19 |
+
|
| 20 |
+
for val in history:
|
| 21 |
+
if val[0]:
|
| 22 |
+
messages.append({"role": "user", "content": val[0]})
|
| 23 |
+
if val[1]:
|
| 24 |
+
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
+
|
| 26 |
+
messages.append({"role": "user", "content": message})
|
| 27 |
+
|
| 28 |
+
response = ""
|
| 29 |
+
|
| 30 |
+
for message in client.chat_completion(
|
| 31 |
+
messages,
|
| 32 |
+
max_tokens=max_tokens,
|
| 33 |
+
stream=True,
|
| 34 |
+
temperature=temperature,
|
| 35 |
+
top_p=top_p,
|
| 36 |
+
):
|
| 37 |
+
token = message.choices[0].delta.content
|
| 38 |
+
|
| 39 |
+
response += token
|
| 40 |
+
yield response
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
"""
|
| 44 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
+
"""
|
| 46 |
+
demo = gr.ChatInterface(
|
| 47 |
+
respond,
|
| 48 |
+
additional_inputs=[
|
| 49 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
+
gr.Slider(
|
| 53 |
+
minimum=0.1,
|
| 54 |
+
maximum=1.0,
|
| 55 |
+
value=0.95,
|
| 56 |
+
step=0.05,
|
| 57 |
+
label="Top-p (nucleus sampling)",
|
| 58 |
+
),
|
| 59 |
+
],
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
if __name__ == "__main__":
|
| 64 |
+
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1 +1,9 @@
|
|
| 1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
huggingface_hub==0.25.2
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
peft
|
| 5 |
+
huggingface_hub
|
| 6 |
+
psutil
|
| 7 |
+
tqdm
|
| 8 |
+
python-dotenv
|
| 9 |
+
gradio
|