Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,22 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
-
from PIL import Image
|
| 4 |
import requests
|
|
|
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import matplotlib.patches as patches
|
| 7 |
-
import numpy as np
|
| 8 |
import random
|
|
|
|
| 9 |
|
| 10 |
-
# Load model and processor
|
| 11 |
model_id = 'microsoft/Florence-2-large'
|
| 12 |
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).eval()
|
| 13 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 14 |
|
| 15 |
def run_example(task_prompt, image, text_input=None):
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
| 17 |
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
| 18 |
generated_ids = model.generate(
|
| 19 |
input_ids=inputs["input_ids"],
|
|
@@ -25,8 +28,8 @@ def run_example(task_prompt, image, text_input=None):
|
|
| 25 |
)
|
| 26 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 27 |
parsed_answer = processor.post_process_generation(
|
| 28 |
-
generated_text,
|
| 29 |
-
task=task_prompt,
|
| 30 |
image_size=(image.width, image.height)
|
| 31 |
)
|
| 32 |
return parsed_answer
|
|
@@ -39,43 +42,147 @@ def plot_bbox(image, data):
|
|
| 39 |
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
|
| 40 |
ax.add_patch(rect)
|
| 41 |
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
|
| 42 |
-
|
| 43 |
-
|
| 44 |
|
| 45 |
def draw_polygons(image, prediction, fill_mask=False):
|
| 46 |
draw = ImageDraw.Draw(image)
|
| 47 |
-
|
| 48 |
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
| 49 |
color = random.choice(colormap)
|
| 50 |
-
fill_color =
|
| 51 |
-
for
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
| 65 |
-
gr.Markdown("## Florence Model Advanced Tasks")
|
| 66 |
-
with gr.Row():
|
| 67 |
-
image_input = gr.Image(type="pil")
|
| 68 |
-
task_input = gr.Dropdown(label="Select Task", choices=[
|
| 69 |
-
'<CAPTION>', '<DETAILED_CAPTION>', '<MORE_DETAILED_CAPTION>',
|
| 70 |
-
'<OD>', '<DENSE_REGION_CAPTION>', '<REGION_PROPOSAL>',
|
| 71 |
-
'<CAPTION_TO_PHRASE_GROUNDING>', '<REFERRING_EXPRESSION_SEGMENTATION>',
|
| 72 |
-
'<REGION_TO_SEGMENTATION>', '<OPEN_VOCABULARY_DETECTION>',
|
| 73 |
-
'<REGION_TO_CATEGORY>', '<REGION_TO_DESCRIPTION>', '<OCR>', '<OCR_WITH_REGION>'
|
| 74 |
-
])
|
| 75 |
-
text_input = gr.Textbox(label="Optional Text Input", placeholder="Enter text here if required by the task")
|
| 76 |
-
submit_btn = gr.Button("Run Task")
|
| 77 |
-
output = gr.Textbox(label="Output")
|
| 78 |
-
|
| 79 |
-
submit_btn.click(fn=gradio_interface, inputs=[image_input, task_input, text_input], outputs=output)
|
| 80 |
|
| 81 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 3 |
+
from PIL import Image
|
| 4 |
import requests
|
| 5 |
+
import copy
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
import matplotlib.patches as patches
|
|
|
|
| 8 |
import random
|
| 9 |
+
import numpy as np
|
| 10 |
|
|
|
|
| 11 |
model_id = 'microsoft/Florence-2-large'
|
| 12 |
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).eval()
|
| 13 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 14 |
|
| 15 |
def run_example(task_prompt, image, text_input=None):
|
| 16 |
+
if text_input is None:
|
| 17 |
+
prompt = task_prompt
|
| 18 |
+
else:
|
| 19 |
+
prompt = task_prompt + text_input
|
| 20 |
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
| 21 |
generated_ids = model.generate(
|
| 22 |
input_ids=inputs["input_ids"],
|
|
|
|
| 28 |
)
|
| 29 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 30 |
parsed_answer = processor.post_process_generation(
|
| 31 |
+
generated_text,
|
| 32 |
+
task=task_prompt,
|
| 33 |
image_size=(image.width, image.height)
|
| 34 |
)
|
| 35 |
return parsed_answer
|
|
|
|
| 42 |
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
|
| 43 |
ax.add_patch(rect)
|
| 44 |
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
|
| 45 |
+
ax.axis('off')
|
| 46 |
+
return fig
|
| 47 |
|
| 48 |
def draw_polygons(image, prediction, fill_mask=False):
|
| 49 |
draw = ImageDraw.Draw(image)
|
| 50 |
+
scale = 1
|
| 51 |
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
| 52 |
color = random.choice(colormap)
|
| 53 |
+
fill_color = random.choice(colormap) if fill_mask else None
|
| 54 |
+
for _polygon in polygons:
|
| 55 |
+
_polygon = np.array(_polygon).reshape(-1, 2)
|
| 56 |
+
if len(_polygon) < 3:
|
| 57 |
+
print('Invalid polygon:', _polygon)
|
| 58 |
+
continue
|
| 59 |
+
_polygon = (_polygon * scale).reshape(-1).tolist()
|
| 60 |
+
if fill_mask:
|
| 61 |
+
draw.polygon(_polygon, outline=color, fill=fill_color)
|
| 62 |
+
else:
|
| 63 |
+
draw.polygon(_polygon, outline=color)
|
| 64 |
+
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
|
| 65 |
+
return image
|
| 66 |
+
|
| 67 |
+
def convert_to_od_format(data):
|
| 68 |
+
bboxes = data.get('bboxes', [])
|
| 69 |
+
labels = data.get('bboxes_labels', [])
|
| 70 |
+
od_results = {
|
| 71 |
+
'bboxes': bboxes,
|
| 72 |
+
'labels': labels
|
| 73 |
+
}
|
| 74 |
+
return od_results
|
| 75 |
+
|
| 76 |
+
def draw_ocr_bboxes(image, prediction):
|
| 77 |
+
scale = 1
|
| 78 |
+
draw = ImageDraw.Draw(image)
|
| 79 |
+
bboxes, labels = prediction['quad_boxes'], prediction['labels']
|
| 80 |
+
for box, label in zip(bboxes, labels):
|
| 81 |
+
color = random.choice(colormap)
|
| 82 |
+
new_box = (np.array(box) * scale).tolist()
|
| 83 |
+
draw.polygon(new_box, width=3, outline=color)
|
| 84 |
+
draw.text((new_box[0]+8, new_box[1]+2),
|
| 85 |
+
"{}".format(label),
|
| 86 |
+
align="right",
|
| 87 |
+
fill=color)
|
| 88 |
+
return image
|
| 89 |
+
|
| 90 |
+
def process_image(image, task_prompt, text_input=None):
|
| 91 |
+
if task_prompt == '<CAPTION>':
|
| 92 |
+
result = run_example(task_prompt, image)
|
| 93 |
+
return result
|
| 94 |
+
elif task_prompt == '<DETAILED_CAPTION>':
|
| 95 |
+
result = run_example(task_prompt, image)
|
| 96 |
+
return result
|
| 97 |
+
elif task_prompt == '<MORE_DETAILED_CAPTION>':
|
| 98 |
+
result = run_example(task_prompt, image)
|
| 99 |
+
return result
|
| 100 |
+
elif task_prompt == '<OD>':
|
| 101 |
+
results = run_example(task_prompt, image)
|
| 102 |
+
fig = plot_bbox(image, results['<OD>'])
|
| 103 |
+
return fig
|
| 104 |
+
elif task_prompt == '<DENSE_REGION_CAPTION>':
|
| 105 |
+
results = run_example(task_prompt, image)
|
| 106 |
+
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
| 107 |
+
return fig
|
| 108 |
+
elif task_prompt == '<REGION_PROPOSAL>':
|
| 109 |
+
results = run_example(task_prompt, image)
|
| 110 |
+
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
| 111 |
+
return fig
|
| 112 |
+
elif task_prompt == '<CAPTION_TO_PHRASE_GROUNDING>':
|
| 113 |
+
results = run_example(task_prompt, image, text_input)
|
| 114 |
+
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
| 115 |
+
return fig
|
| 116 |
+
elif task_prompt == '<REFERRING_EXPRESSION_SEGMENTATION>':
|
| 117 |
+
results = run_example(task_prompt, image, text_input)
|
| 118 |
+
output_image = copy.deepcopy(image)
|
| 119 |
+
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
| 120 |
+
return output_image
|
| 121 |
+
elif task_prompt == '<REGION_TO_SEGMENTATION>':
|
| 122 |
+
results = run_example(task_prompt, image, text_input)
|
| 123 |
+
output_image = copy.deepcopy(image)
|
| 124 |
+
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
| 125 |
+
return output_image
|
| 126 |
+
elif task_prompt == '<OPEN_VOCABULARY_DETECTION>':
|
| 127 |
+
results = run_example(task_prompt, image, text_input)
|
| 128 |
+
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
| 129 |
+
fig = plot_bbox(image, bbox_results)
|
| 130 |
+
return fig
|
| 131 |
+
elif task_prompt == '<REGION_TO_CATEGORY>':
|
| 132 |
+
results = run_example(task_prompt, image, text_input)
|
| 133 |
+
return results
|
| 134 |
+
elif task_prompt == '<REGION_TO_DESCRIPTION>':
|
| 135 |
+
results = run_example(task_prompt, image, text_input)
|
| 136 |
+
return results
|
| 137 |
+
elif task_prompt == '<OCR>':
|
| 138 |
+
result = run_example(task_prompt, image)
|
| 139 |
+
return result
|
| 140 |
+
elif task_prompt == '<OCR_WITH_REGION>':
|
| 141 |
+
results = run_example(task_prompt, image)
|
| 142 |
+
output_image = copy.deepcopy(image)
|
| 143 |
+
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
| 144 |
+
return output_image
|
| 145 |
+
|
| 146 |
+
css = """
|
| 147 |
+
#output {
|
| 148 |
+
height: 500px;
|
| 149 |
+
overflow: auto;
|
| 150 |
+
border: 1px solid #ccc;
|
| 151 |
+
}
|
| 152 |
+
"""
|
| 153 |
+
|
| 154 |
+
with gr.Blocks(css=css) as demo:
|
| 155 |
+
gr.HTML("<h1><center>Florence-2 Demo<center><h1>")
|
| 156 |
+
with gr.Tab(label="Florence-2 Image Captioning"):
|
| 157 |
+
with gr.Row():
|
| 158 |
+
with gr.Column():
|
| 159 |
+
input_img = gr.Image(label="Input Picture")
|
| 160 |
+
task_prompt = gr.Dropdown(choices=[
|
| 161 |
+
'<CAPTION>', '<DETAILED_CAPTION>', '<MORE_DETAILED_CAPTION>', '<OD>',
|
| 162 |
+
'<DENSE_REGION_CAPTION>', '<REGION_PROPOSAL>', '<CAPTION_TO_PHRASE_GROUNDING>',
|
| 163 |
+
'<REFERRING_EXPRESSION_SEGMENTATION>', '<REGION_TO_SEGMENTATION>',
|
| 164 |
+
'<OPEN_VOCABULARY_DETECTION>', '<REGION_TO_CATEGORY>', '<REGION_TO_DESCRIPTION>',
|
| 165 |
+
'<OCR>', '<OCR_WITH_REGION>'
|
| 166 |
+
], label="Task Prompt")
|
| 167 |
+
text_input = gr.Textbox(label="Text Input (optional)")
|
| 168 |
+
submit_btn = gr.Button(value="Submit")
|
| 169 |
+
with gr.Column():
|
| 170 |
+
output_text = gr.Textbox(label="Output Text")
|
| 171 |
+
output_img = gr.Image(label="Output Image")
|
| 172 |
|
| 173 |
+
gr.Examples(
|
| 174 |
+
examples=[
|
| 175 |
+
["image1.jpg", '<CAPTION>'],
|
| 176 |
+
["image1.jpg", '<OD>'],
|
| 177 |
+
["image1.jpg", '<OCR_WITH_REGION>']
|
| 178 |
+
],
|
| 179 |
+
inputs=[input_img, task_prompt],
|
| 180 |
+
outputs=[output_text, output_img],
|
| 181 |
+
fn=process_image,
|
| 182 |
+
cache_examples=True,
|
| 183 |
+
label='Try examples'
|
| 184 |
+
)
|
| 185 |
|
| 186 |
+
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
+
demo.launch(debug=True)
|