Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| #from transformers import pipeline | |
| from tensorflow.keras.models import load_model | |
| #pipe = pipeline(task="image-classification", model="SuperSecureHuman/Flower-CNN") | |
| model = load_model('./model.h5') | |
| def predict_image(img): | |
| img_4d = img.reshape(-1, 224, 224, 3) | |
| prediction = model.predict(img_4d)[0] | |
| return {class_names[i]: float(prediction[i]) for i in range(3)} | |
| class_names = ['Crescentia_Cujete', 'Fiddle_Wood', 'Gold_Apple', 'Hill_Mango', 'Indian_Tulip_Tree', 'Mahagony', 'Pala_Indigo_Plant', 'Spanish_Cherry', 'Teak', 'Yellow_Trumpet'] | |
| image = gr.inputs.Image(shape=(224, 224)) | |
| label = gr.outputs.Label(num_top_classes=3) | |
| gr.Interface(fn=predict_image, | |
| title="Tree Classification", | |
| description="Tree CNN", | |
| inputs=image, | |
| outputs=label, | |
| live=True, | |
| interpretation='default', | |
| allow_flagging="never").launch() | |