Spaces:
Running
Running
File size: 22,036 Bytes
6171212 11915ae 8a34363 11915ae 6171212 11915ae 113f6ec 8a34363 11915ae 8a34363 113f6ec 8a34363 11915ae 8a34363 11915ae 8a34363 11915ae 8a34363 6171212 11915ae 6171212 11915ae 6171212 8a34363 6171212 8a34363 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 8a34363 11915ae 6171212 8a34363 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 8a34363 11915ae 8a34363 11915ae 6171212 11915ae 8a34363 11915ae 6171212 11915ae 6171212 11915ae 8a34363 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 8a34363 6171212 11915ae 6171212 11915ae 6171212 8a34363 6171212 8a34363 6171212 11915ae 8a34363 11915ae 6171212 11915ae 6171212 11915ae 6171212 8a34363 6171212 11915ae 8a34363 6171212 8a34363 6171212 8a34363 6171212 11915ae 6171212 11915ae 6171212 8a34363 6171212 11915ae 8a34363 11915ae 6171212 11915ae 6171212 11915ae 6171212 8a34363 6171212 11915ae 6171212 11915ae 6171212 11915ae 8a34363 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae 6171212 11915ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 |
import io, json
from typing import List, Dict, Optional, Tuple
import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torch
from diffusers import (
StableDiffusionXLPipeline,
StableDiffusionXLImg2ImgPipeline,
StableDiffusionXLInpaintPipeline,
StableDiffusionXLControlNetPipeline,
ControlNetModel,
StableDiffusionUpscalePipeline,
DPMSolverMultistepScheduler, EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler, HeunDiscreteScheduler,
)
# ---------------- Optional deps (safe imports: ไม่มีก็ข้าม) ----------------
try:
from rembg import remove as rembg_remove
except Exception:
rembg_remove = None
_HAS_GFP = False
GFPGANer = None
GFP = None
try:
import gfpgan # type: ignore
if hasattr(gfpgan, "GFPGANer"):
GFPGANer = gfpgan.GFPGANer # type: ignore
_HAS_GFP = True
except Exception as e:
print("[WARN] GFPGAN not available:", e)
_HAS_REALESRGAN = False
RealESRGAN = None
REALSR = None
try:
from realesrgan import RealESRGAN # type: ignore
_HAS_REALESRGAN = True
except Exception as e:
print("[WARN] RealESRGAN not available:", e)
# ---------------- Runtime setup ----------------
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device == "cuda" else torch.float32
# ---------------- Registries ----------------
MODELS: List[Tuple[str,str,str]] = [
("stabilityai/stable-diffusion-xl-base-1.0", "SDXL Base 1.0", "เอนกประสงค์"),
("stabilityai/stable-diffusion-xl-refiner-1.0","SDXL Refiner", "เสริมรายละเอียด (pass 2)"),
("SG161222/RealVisXL_V4.0", "RealVis XL v4", "โฟโต้เรียล คน/สินค้า"),
("Lykon/dreamshaper-xl-v2", "DreamShaper XL","แฟนตาซี-เรียลลิสติก"),
("RunDiffusion/Juggernaut-XL", "Juggernaut XL", "คอนทราสต์แรง"),
("emilianJR/epiCRealismXL", "EpicRealism XL","แฟชั่น/พอร์เทรต"),
("black-forest-labs/FLUX.1-dev", "FLUX.1-dev", "แนวสมัยใหม่ (ไม่ใช่ SDXL)"),
("stabilityai/sd-turbo", "SD-Turbo", "เร็วมากสำหรับร่างไอเดีย"),
("stabilityai/stable-diffusion-2-1", "SD 2.1", "แลนด์สเคปกว้าง"),
("runwayml/stable-diffusion-v1-5", "SD 1.5", "คลาสสิก"),
("timbrooks/instruct-pix2pix", "Instruct-Pix2Pix","แก้ภาพตามคำสั่ง"),
]
LORAS: List[Tuple[str,str,str]] = [
("ByteDance/SDXL-Lightning", "SDXL-Lightning", "สปีด"),
("ostris/epicrealism-xl-lora", "EpicRealism XL", "โทนจริง"),
("alpha-diffusion/sdxl-anime-lora", "Anime-Style XL", "อนิเม"),
("alpha-diffusion/sdxl-cinematic-lora","Cinematic-Drama", "แสงหนัง"),
("alpha-diffusion/sdxl-watercolor-lora","Watercolor", "สีน้ำ"),
("alpha-diffusion/sdxl-fashion-lora", "Fashion", "แฟชั่น"),
("alpha-diffusion/sdxl-product-lora", "Product-Studio", "สินค้า"),
("alpha-diffusion/sdxl-interior-lora", "Interior-Archi", "สถาปัตย์"),
("alpha-diffusion/sdxl-food-lora", "Food-Tasty", "อาหาร"),
("alpha-diffusion/sdxl-logo-lora", "Logo-Clean", "โลโก้"),
]
# ใช้ 5 ชนิดหลักเพื่อ UI กระชับและเสถียร
CONTROLNETS: List[Tuple[str,str,str,str]] = [
("diffusers/controlnet-canny-sdxl-1.0", "Canny", "เส้นขอบ", "canny"),
("diffusers/controlnet-openpose-sdxl-1.0", "OpenPose", "ท่าทางคน", "pose"),
("diffusers/controlnet-depth-sdxl-1.0", "Depth", "ระยะลึก", "depth"),
("diffusers/controlnet-softedge-sdxl-1.0", "SoftEdge", "เส้นนุ่ม", "softedge"),
("diffusers/controlnet-lineart-sdxl-1.0", "Lineart", "เส้นร่าง", "lineart"),
]
PRESETS = {
"Cinematic": ", cinematic lighting, 50mm, bokeh, film grain, high dynamic range",
"Studio": ", studio photo, softbox lighting, sharp focus, high detail",
"Anime": ", anime style, clean lineart, vibrant colors, high quality",
"Product": ", product photography, seamless background, diffused light, reflections",
}
NEG_DEFAULT = "lowres, blurry, bad anatomy, extra fingers, watermark, jpeg artifacts, text"
SCHEDULERS = {
"DPM-Solver (Karras)": DPMSolverMultistepScheduler,
"Euler": EulerDiscreteScheduler,
"Euler a": EulerAncestralDiscreteScheduler,
"Heun": HeunDiscreteScheduler,
}
# ---------------- Caches ----------------
PIPE_CACHE: Dict[str, object] = {}
CONTROL_CACHE: Dict[str, ControlNetModel] = {}
UPSCALE_PIPE: Optional[StableDiffusionUpscalePipeline] = None
# ---------------- Helpers ----------------
def set_sched(pipe, name: str):
cls = SCHEDULERS.get(name, DPMSolverMultistepScheduler)
pipe.scheduler = cls.from_config(pipe.scheduler.config)
def seed_gen(sd: int):
if sd is None or sd < 0: return None
g = torch.Generator(device=("cuda" if device=="cuda" else "cpu"))
g.manual_seed(int(sd)); return g
def prep_pipe(model_id: str, control_ids: List[str]):
key = f"{model_id}|{'-'.join(control_ids) if control_ids else 'none'}"
if key in PIPE_CACHE: return PIPE_CACHE[key]
if control_ids:
cn_models = []
for cid in control_ids:
if cid not in CONTROL_CACHE:
CONTROL_CACHE[cid] = ControlNetModel.from_pretrained(cid, torch_dtype=dtype, use_safetensors=True)
cn_models.append(CONTROL_CACHE[cid])
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(model_id, controlnet=cn_models, torch_dtype=dtype, use_safetensors=True)
else:
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=dtype, use_safetensors=True)
pipe.to(device)
try:
if device == "cuda":
pipe.enable_vae_tiling(); pipe.enable_vae_slicing()
pipe.enable_xformers_memory_efficient_attention()
else:
pipe.enable_attention_slicing()
except Exception:
pass
PIPE_CACHE[key] = pipe
return pipe
def apply_loras(pipe, lora_ids: List[str]):
for rid in [x for x in lora_ids if x]:
try:
pipe.load_lora_weights(rid)
except Exception as e:
print(f"[LoRA] load failed {rid}: {e}")
def to_info(meta: dict) -> str:
return json.dumps(meta, ensure_ascii=False, indent=2)
# ---------------- Post-process ----------------
def ensure_upscalers():
global UPSCALE_PIPE, GFP, REALSR
if UPSCALE_PIPE is None:
try:
UPSCALE_PIPE = StableDiffusionUpscalePipeline.from_pretrained(
"stabilityai/stable-diffusion-x4-upscaler",
torch_dtype=dtype, use_safetensors=True
).to(device)
except Exception as e:
print("[Upscaler] SD x4 not available:", e)
if _HAS_GFP and GFP is None and GFPGANer is not None:
try:
GFP = GFPGANer(model_path=None, upscale=1, arch="clean", channel_multiplier=2)
except Exception as e:
print("[GFPGAN] init failed:", e)
if _HAS_REALESRGAN and REALSR is None and device == "cuda":
try:
REALSR = RealESRGAN(torch.device("cuda"), scale=4) # ต้องมี weights เองจึงจะทำงานจริง
except Exception as e:
REALSR = None
print("[RealESRGAN] init failed:", e)
def post_process(img: Image.Image, do_up: bool, do_face: bool, do_bg: bool):
ensure_upscalers()
out = img
# Upscale: RealESRGAN (ถ้ามี) > SD x4 > skip
if do_up:
try:
if REALSR is not None:
out = Image.fromarray(REALSR.predict(np.array(out)))
elif UPSCALE_PIPE is not None:
if device == "cuda":
with torch.autocast("cuda"):
out = UPSCALE_PIPE(prompt="", image=out).images[0]
else:
out = UPSCALE_PIPE(prompt="", image=out).images[0]
except Exception as e:
print("[Upscale] skipped:", e)
if do_face and _HAS_GFP and GFP is not None:
try:
_, _, restored = GFP.enhance(np.array(out), has_aligned=False, only_center_face=False, paste_back=True)
out = Image.fromarray(restored)
except Exception as e:
print("[GFPGAN] skipped:", e)
if do_bg and rembg_remove is not None:
try:
out = Image.open(io.BytesIO(rembg_remove(np.array(out))))
except Exception as e:
print("[rembg] skipped:", e)
return out
# ---------------- Generators ----------------
def run_txt2img(
model_id, model_custom, prompt, preset, negative,
steps, cfg, width, height, scheduler_name, seed,
lora_selected, lora_custom,
ctrl_selected, img_canny, img_pose, img_depth, img_softedge, img_lineart,
do_up, do_face, do_bg
):
if not prompt or not str(prompt).strip():
raise gr.Error("กรุณากรอก prompt")
model = (model_custom.strip() or model_id).strip()
if preset and preset in PRESETS: prompt = prompt + PRESETS[preset]
if not negative or not negative.strip(): negative = NEG_DEFAULT
# ControlNet mapping (เฉพาะภาพที่อัปโหลดจริง)
label_to_img = {
"Canny": img_canny, "OpenPose": img_pose, "Depth": img_depth,
"SoftEdge": img_softedge, "Lineart": img_lineart
}
control_ids, cond_images = [], []
for cid, label, note, key in CONTROLNETS:
if label in ctrl_selected and label_to_img.get(label) is not None:
control_ids.append(cid); cond_images.append(label_to_img[label])
pipe = prep_pipe(model, control_ids)
set_sched(pipe, scheduler_name)
# LoRA
lora_ids = [s.split(" — ")[0].strip() for s in (lora_selected or [])]
if lora_custom and lora_custom.strip():
lora_ids += [x.strip() for x in lora_custom.split(",") if x.strip()]
apply_loras(pipe, lora_ids)
width, height = int(width), int(height)
gen = seed_gen(seed)
if device == "cuda":
with torch.autocast("cuda"):
if control_ids:
img = pipe(
prompt=prompt, negative_prompt=negative,
width=width, height=height,
num_inference_steps=int(steps), guidance_scale=float(cfg),
controlnet_conditioning_image=cond_images if len(cond_images)>1 else cond_images[0],
generator=gen
).images[0]
else:
img = pipe(
prompt=prompt, negative_prompt=negative,
width=width, height=height,
num_inference_steps=int(steps), guidance_scale=float(cfg),
generator=gen
).images[0]
else:
if control_ids:
img = pipe(
prompt=prompt, negative_prompt=negative,
width=width, height=height,
num_inference_steps=int(steps), guidance_scale=float(cfg),
controlnet_conditioning_image=cond_images if len(cond_images)>1 else cond_images[0],
generator=gen
).images[0]
else:
img = pipe(
prompt=prompt, negative_prompt=negative,
width=width, height=height,
num_inference_steps=int(steps), guidance_scale=float(cfg),
generator=gen
).images[0]
img = post_process(img, do_up, do_face, do_bg)
meta = {
"mode":"txt2img","model":model,"loras":lora_ids,"controlnets":ctrl_selected,
"prompt":prompt,"negative":negative,"size":f"{width}x{height}",
"steps":steps,"cfg":cfg,"scheduler":scheduler_name,"seed":seed,
"post":{"upscale":do_up,"face_restore":do_face,"remove_bg":do_bg}
}
return img, to_info(meta)
def run_img2img(
model_id, model_custom, init_image, strength,
prompt, preset, negative, steps, cfg, width, height, scheduler_name, seed,
do_up, do_face, do_bg
):
if init_image is None: raise gr.Error("โปรดอัปโหลดภาพเริ่มต้น")
model = (model_custom.strip() or model_id).strip()
if preset and preset in PRESETS: prompt = prompt + PRESETS[preset]
if not negative or not negative.strip(): negative = NEG_DEFAULT
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(model, torch_dtype=dtype, use_safetensors=True).to(device)
try:
if device=="cuda": pipe.enable_xformers_memory_efficient_attention()
except Exception: pass
set_sched(pipe, scheduler_name); gen = seed_gen(seed)
if device=="cuda":
with torch.autocast("cuda"):
img = pipe(prompt=prompt, negative_prompt=negative,
image=init_image, strength=float(strength),
num_inference_steps=int(steps), guidance_scale=float(cfg),
generator=gen).images[0]
else:
img = pipe(prompt=prompt, negative_prompt=negative,
image=init_image, strength=float(strength),
num_inference_steps=int(steps), guidance_scale=float(cfg),
generator=gen).images[0]
img = post_process(img, do_up, do_face, do_bg)
meta = {"mode":"img2img","model":model,"prompt":prompt,"neg":negative,
"steps":steps,"cfg":cfg,"seed":seed,"strength":strength}
return img, to_info(meta)
def expand_canvas_for_outpaint(img: Image.Image, expand_px: int, direction: str) -> Tuple[Image.Image, Image.Image]:
w, h = img.size
if direction == "left":
new = Image.new("RGBA",(w+expand_px,h),(0,0,0,0)); new.paste(img,(expand_px,0))
mask = Image.new("L",(w+expand_px,h),0); d=ImageDraw.Draw(mask); d.rectangle([0,0,expand_px,h], fill=255)
elif direction == "right":
new = Image.new("RGBA",(w+expand_px,h),(0,0,0,0)); new.paste(img,(0,0))
mask = Image.new("L",(w+expand_px,h),0); d=ImageDraw.Draw(mask); d.rectangle([w,0,w+expand_px,h], fill=255)
elif direction == "top":
new = Image.new("RGBA",(w,h+expand_px),(0,0,0,0)); new.paste(img,(0,expand_px))
mask = Image.new("L",(w,h+expand_px),0); d=ImageDraw.Draw(mask); d.rectangle([0,0,w,expand_px], fill=255)
else:
new = Image.new("RGBA",(w,h+expand_px),(0,0,0,0)); new.paste(img,(0,0))
mask = Image.new("L",(w,h+expand_px),0); d=ImageDraw.Draw(mask); d.rectangle([0,h,w,h+expand_px], fill=255)
return new.convert("RGB"), mask
def run_inpaint_outpaint(
model_id, model_custom, base_image, mask_image, mode, expand_px, expand_dir,
prompt, preset, negative, steps, cfg, width, height, scheduler_name, seed,
strength, do_up, do_face, do_bg
):
if base_image is None: raise gr.Error("โปรดอัปโหลดภาพฐาน")
model = (model_custom.strip() or model_id).strip()
if preset and preset in PRESETS: prompt = prompt + PRESETS[preset]
if not negative or not negative.strip(): negative = NEG_DEFAULT
pipe = StableDiffusionXLInpaintPipeline.from_pretrained(model, torch_dtype=dtype, use_safetensors=True).to(device)
try:
if device=="cuda": pipe.enable_xformers_memory_efficient_attention()
except Exception: pass
set_sched(pipe, scheduler_name); gen = seed_gen(seed)
if mode == "Outpaint":
base_image, mask_image = expand_canvas_for_outpaint(base_image, int(expand_px), expand_dir)
if device=="cuda":
with torch.autocast("cuda"):
img = pipe(prompt=prompt, negative_prompt=negative,
image=base_image, mask_image=mask_image,
strength=float(strength),
num_inference_steps=int(steps), guidance_scale=float(cfg),
generator=gen).images[0]
else:
img = pipe(prompt=prompt, negative_prompt=negative,
image=base_image, mask_image=mask_image,
strength=float(strength),
num_inference_steps=int(steps), guidance_scale=float(cfg),
generator=gen).images[0]
img = post_process(img, do_up, do_face, do_bg)
meta = {"mode":mode,"model":model,"prompt":prompt,"steps":steps,"cfg":cfg,"seed":seed}
return img, to_info(meta)
# ---------------- UI ----------------
def build_ui():
with gr.Blocks(theme=gr.themes.Soft(), title="Masterpiece SDXL Studio Pro") as demo:
gr.Markdown("# 🖼️ Masterpiece SDXL Studio Pro")
gr.Markdown("Text2Img • Img2Img • Inpaint/Outpaint • Multi-LoRA • ControlNet • Upscale/FaceRestore/RemoveBG (optional)")
# Common controls
model_dd = gr.Dropdown(choices=[m[0] for m in MODELS], value=MODELS[0][0], label="Model")
model_custom = gr.Textbox(label="Custom Model ID", placeholder="(ถ้าอยากใช้โมเดลของคุณเอง กรอกที่นี่)")
preset = gr.Dropdown(choices=list(PRESETS.keys()), value=None, label="Style Preset (optional)")
negative = gr.Textbox(value=NEG_DEFAULT, label="Negative Prompt")
steps = gr.Slider(10, 60, 30, step=1, label="Steps")
cfg = gr.Slider(1.0, 12.0, 7.0, step=0.1, label="CFG")
width = gr.Slider(512, 1024, 832, step=64, label="Width")
height= gr.Slider(512, 1024, 832, step=64, label="Height")
scheduler = gr.Dropdown(list(SCHEDULERS.keys()), value="DPM-Solver (Karras)", label="Scheduler")
seed = gr.Number(value=-1, precision=0, label="Seed (-1 = random)")
# LoRA & ControlNet
lora_sel = gr.CheckboxGroup(choices=[f"{rid} — {lbl} ({note})" for rid,lbl,note in LORAS], label="LoRA (เลือกได้หลายตัว)")
lora_custom = gr.Textbox(label="Custom LoRA IDs (comma separated)")
ctrl_sel = gr.CheckboxGroup(choices=[c[1] for c in CONTROLNETS], label="ControlNet ชนิดที่ใช้")
img_canny = gr.Image(type="pil", label="Canny")
img_pose = gr.Image(type="pil", label="OpenPose")
img_depth = gr.Image(type="pil", label="Depth")
img_softedge = gr.Image(type="pil", label="SoftEdge")
img_lineart = gr.Image(type="pil", label="Lineart")
with gr.Row():
do_up = gr.Checkbox(False, label="Upscale x4 (ถ้ามี)")
do_face = gr.Checkbox(False, label="Face Restore (ถ้ามี)")
do_bg = gr.Checkbox(False, label="Remove BG (ถ้ามี)")
with gr.Tab("Text → Image"):
prompt_txt = gr.Textbox(lines=3, label="Prompt")
btn_txt = gr.Button("🚀 Generate")
out_img_txt = gr.Image(type="pil", label="Result")
out_meta_txt = gr.Textbox(label="Metadata", lines=10)
with gr.Tab("Image → Image"):
init_img = gr.Image(type="pil", label="Init Image")
strength = gr.Slider(0.1, 1.0, 0.7, 0.05, label="Strength")
prompt_i2i = gr.Textbox(lines=3, label="Prompt")
btn_i2i = gr.Button("🚀 Img2Img")
out_img_i2i = gr.Image(type="pil", label="Result")
out_meta_i2i = gr.Textbox(label="Metadata", lines=10)
with gr.Tab("Inpaint / Outpaint"):
base_img = gr.Image(type="pil", label="Base Image")
mask_img = gr.Image(type="pil", label="Mask (ขาว=แก้, ดำ=คงเดิม)")
mode_io = gr.Radio(["Inpaint","Outpaint"], value="Inpaint", label="Mode")
expand_px = gr.Slider(64, 1024, 256, 64, label="Outpaint pixels")
expand_dir = gr.Radio(["left","right","top","bottom"], value="right", label="Outpaint direction")
prompt_io = gr.Textbox(lines=3, label="Prompt")
btn_io = gr.Button("🚀 Inpaint/Outpaint")
out_img_io = gr.Image(type="pil", label="Result")
out_meta_io = gr.Textbox(label="Metadata", lines=10)
# Bindings
btn_txt.click(
fn=run_txt2img,
inputs=[
model_dd, model_custom, prompt_txt, preset, negative,
steps, cfg, width, height, scheduler, seed,
lora_sel, lora_custom,
ctrl_sel, img_canny, img_pose, img_depth, img_softedge, img_lineart,
do_up, do_face, do_bg
],
outputs=[out_img_txt, out_meta_txt],
api_name="txt2img"
)
btn_i2i.click(
fn=run_img2img,
inputs=[
model_dd, model_custom, init_img, strength,
prompt_i2i, preset, negative, steps, cfg, width, height, scheduler, seed,
do_up, do_face, do_bg
],
outputs=[out_img_i2i, out_meta_i2i],
api_name="img2img"
)
btn_io.click(
fn=run_inpaint_outpaint,
inputs=[
model_dd, model_custom, base_img, mask_img, mode_io, expand_px, expand_dir,
prompt_io, preset, negative, steps, cfg, width, height, scheduler, seed,
strength, do_up, do_face, do_bg
],
outputs=[out_img_io, out_meta_io],
api_name="inpaint_outpaint"
)
gr.Markdown("ℹ️ ถ้าโมดูลเสริมหรือบางโมเดลไม่พร้อมใช้งาน ระบบจะข้ามอย่างปลอดภัยและแจ้งเตือนใน Console")
return demo
demo = build_ui()
demo.queue(max_size=8).launch()
|