File size: 22,036 Bytes
6171212
11915ae
 
 
 
8a34363
11915ae
 
 
 
 
 
 
 
 
 
 
 
6171212
11915ae
 
 
 
 
113f6ec
8a34363
 
11915ae
8a34363
113f6ec
 
 
8a34363
 
11915ae
8a34363
 
 
11915ae
8a34363
11915ae
8a34363
 
 
6171212
11915ae
 
 
6171212
11915ae
6171212
 
8a34363
6171212
 
8a34363
6171212
 
 
 
 
11915ae
 
 
6171212
 
 
 
 
 
 
 
 
 
11915ae
 
6171212
11915ae
6171212
 
 
 
 
11915ae
 
 
 
 
 
6171212
11915ae
 
 
 
 
 
 
 
 
 
6171212
11915ae
 
 
 
8a34363
11915ae
 
 
 
 
 
6171212
8a34363
11915ae
 
 
 
 
 
6171212
11915ae
 
 
6171212
 
11915ae
 
 
6171212
 
 
 
 
 
 
 
 
11915ae
 
 
 
6171212
 
11915ae
 
 
 
 
6171212
11915ae
 
6171212
11915ae
 
 
 
 
 
8a34363
11915ae
 
 
 
8a34363
11915ae
 
 
 
 
 
 
6171212
11915ae
8a34363
11915ae
 
6171212
11915ae
 
 
6171212
 
11915ae
 
 
 
 
 
 
 
 
 
 
 
 
 
8a34363
 
11915ae
 
 
6171212
11915ae
 
 
 
 
 
 
6171212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11915ae
 
6171212
 
 
 
 
11915ae
6171212
11915ae
 
 
 
6171212
 
 
 
 
 
 
 
11915ae
6171212
 
 
 
 
 
11915ae
6171212
 
 
 
 
 
 
 
11915ae
6171212
 
 
 
 
 
 
 
11915ae
6171212
8a34363
 
6171212
11915ae
6171212
11915ae
6171212
 
 
 
 
8a34363
6171212
 
 
8a34363
6171212
11915ae
 
8a34363
 
11915ae
 
 
6171212
 
 
 
11915ae
6171212
 
 
 
11915ae
6171212
8a34363
 
6171212
11915ae
 
 
8a34363
6171212
 
8a34363
6171212
 
8a34363
6171212
 
 
 
 
11915ae
 
6171212
 
 
 
 
11915ae
6171212
 
 
8a34363
6171212
11915ae
 
8a34363
 
11915ae
 
 
 
 
 
 
 
6171212
 
 
11915ae
 
 
6171212
 
 
11915ae
6171212
8a34363
6171212
11915ae
 
 
 
 
6171212
11915ae
6171212
 
 
11915ae
 
 
8a34363
11915ae
 
 
 
 
6171212
 
 
 
 
 
 
 
 
 
 
 
11915ae
 
6171212
 
 
11915ae
 
 
 
 
 
 
 
6171212
11915ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6171212
11915ae
 
 
 
 
6171212
 
 
11915ae
 
 
 
 
 
 
6171212
 
 
 
 
11915ae
 
 
 
 
 
6171212
 
 
 
 
11915ae
 
 
 
6171212
11915ae
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import io, json
from typing import List, Dict, Optional, Tuple

import gradio as gr
import numpy as np
from PIL import Image, ImageDraw
import torch
from diffusers import (
    StableDiffusionXLPipeline,
    StableDiffusionXLImg2ImgPipeline,
    StableDiffusionXLInpaintPipeline,
    StableDiffusionXLControlNetPipeline,
    ControlNetModel,
    StableDiffusionUpscalePipeline,
    DPMSolverMultistepScheduler, EulerDiscreteScheduler,
    EulerAncestralDiscreteScheduler, HeunDiscreteScheduler,
)

# ---------------- Optional deps (safe imports: ไม่มีก็ข้าม) ----------------
try:
    from rembg import remove as rembg_remove
except Exception:
    rembg_remove = None

_HAS_GFP = False
GFPGANer = None
GFP = None
try:
    import gfpgan  # type: ignore
    if hasattr(gfpgan, "GFPGANer"):
        GFPGANer = gfpgan.GFPGANer  # type: ignore
        _HAS_GFP = True
except Exception as e:
    print("[WARN] GFPGAN not available:", e)

_HAS_REALESRGAN = False
RealESRGAN = None
REALSR = None
try:
    from realesrgan import RealESRGAN  # type: ignore
    _HAS_REALESRGAN = True
except Exception as e:
    print("[WARN] RealESRGAN not available:", e)

# ---------------- Runtime setup ----------------
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype  = torch.float16 if device == "cuda" else torch.float32

# ---------------- Registries ----------------
MODELS: List[Tuple[str,str,str]] = [
    ("stabilityai/stable-diffusion-xl-base-1.0",   "SDXL Base 1.0", "เอนกประสงค์"),
    ("stabilityai/stable-diffusion-xl-refiner-1.0","SDXL Refiner",  "เสริมรายละเอียด (pass 2)"),
    ("SG161222/RealVisXL_V4.0",                    "RealVis XL v4", "โฟโต้เรียล คน/สินค้า"),
    ("Lykon/dreamshaper-xl-v2",                    "DreamShaper XL","แฟนตาซี-เรียลลิสติก"),
    ("RunDiffusion/Juggernaut-XL",                 "Juggernaut XL", "คอนทราสต์แรง"),
    ("emilianJR/epiCRealismXL",                    "EpicRealism XL","แฟชั่น/พอร์เทรต"),
    ("black-forest-labs/FLUX.1-dev",               "FLUX.1-dev",    "แนวสมัยใหม่ (ไม่ใช่ SDXL)"),
    ("stabilityai/sd-turbo",                       "SD-Turbo",      "เร็วมากสำหรับร่างไอเดีย"),
    ("stabilityai/stable-diffusion-2-1",           "SD 2.1",        "แลนด์สเคปกว้าง"),
    ("runwayml/stable-diffusion-v1-5",             "SD 1.5",        "คลาสสิก"),
    ("timbrooks/instruct-pix2pix",                 "Instruct-Pix2Pix","แก้ภาพตามคำสั่ง"),
]

LORAS: List[Tuple[str,str,str]] = [
    ("ByteDance/SDXL-Lightning",           "SDXL-Lightning",   "สปีด"),
    ("ostris/epicrealism-xl-lora",         "EpicRealism XL",   "โทนจริง"),
    ("alpha-diffusion/sdxl-anime-lora",    "Anime-Style XL",   "อนิเม"),
    ("alpha-diffusion/sdxl-cinematic-lora","Cinematic-Drama",  "แสงหนัง"),
    ("alpha-diffusion/sdxl-watercolor-lora","Watercolor",      "สีน้ำ"),
    ("alpha-diffusion/sdxl-fashion-lora",  "Fashion",          "แฟชั่น"),
    ("alpha-diffusion/sdxl-product-lora",  "Product-Studio",   "สินค้า"),
    ("alpha-diffusion/sdxl-interior-lora", "Interior-Archi",   "สถาปัตย์"),
    ("alpha-diffusion/sdxl-food-lora",     "Food-Tasty",       "อาหาร"),
    ("alpha-diffusion/sdxl-logo-lora",     "Logo-Clean",       "โลโก้"),
]

# ใช้ 5 ชนิดหลักเพื่อ UI กระชับและเสถียร
CONTROLNETS: List[Tuple[str,str,str,str]] = [
    ("diffusers/controlnet-canny-sdxl-1.0",    "Canny",     "เส้นขอบ",    "canny"),
    ("diffusers/controlnet-openpose-sdxl-1.0", "OpenPose",  "ท่าทางคน",   "pose"),
    ("diffusers/controlnet-depth-sdxl-1.0",    "Depth",     "ระยะลึก",    "depth"),
    ("diffusers/controlnet-softedge-sdxl-1.0", "SoftEdge",  "เส้นนุ่ม",    "softedge"),
    ("diffusers/controlnet-lineart-sdxl-1.0",  "Lineart",   "เส้นร่าง",    "lineart"),
]

PRESETS = {
    "Cinematic": ", cinematic lighting, 50mm, bokeh, film grain, high dynamic range",
    "Studio":    ", studio photo, softbox lighting, sharp focus, high detail",
    "Anime":     ", anime style, clean lineart, vibrant colors, high quality",
    "Product":   ", product photography, seamless background, diffused light, reflections",
}
NEG_DEFAULT = "lowres, blurry, bad anatomy, extra fingers, watermark, jpeg artifacts, text"

SCHEDULERS = {
    "DPM-Solver (Karras)": DPMSolverMultistepScheduler,
    "Euler": EulerDiscreteScheduler,
    "Euler a": EulerAncestralDiscreteScheduler,
    "Heun": HeunDiscreteScheduler,
}

# ---------------- Caches ----------------
PIPE_CACHE: Dict[str, object] = {}
CONTROL_CACHE: Dict[str, ControlNetModel] = {}
UPSCALE_PIPE: Optional[StableDiffusionUpscalePipeline] = None

# ---------------- Helpers ----------------
def set_sched(pipe, name: str):
    cls = SCHEDULERS.get(name, DPMSolverMultistepScheduler)
    pipe.scheduler = cls.from_config(pipe.scheduler.config)

def seed_gen(sd: int):
    if sd is None or sd < 0: return None
    g = torch.Generator(device=("cuda" if device=="cuda" else "cpu"))
    g.manual_seed(int(sd)); return g

def prep_pipe(model_id: str, control_ids: List[str]):
    key = f"{model_id}|{'-'.join(control_ids) if control_ids else 'none'}"
    if key in PIPE_CACHE: return PIPE_CACHE[key]

    if control_ids:
        cn_models = []
        for cid in control_ids:
            if cid not in CONTROL_CACHE:
                CONTROL_CACHE[cid] = ControlNetModel.from_pretrained(cid, torch_dtype=dtype, use_safetensors=True)
            cn_models.append(CONTROL_CACHE[cid])
        pipe = StableDiffusionXLControlNetPipeline.from_pretrained(model_id, controlnet=cn_models, torch_dtype=dtype, use_safetensors=True)
    else:
        pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=dtype, use_safetensors=True)

    pipe.to(device)
    try:
        if device == "cuda":
            pipe.enable_vae_tiling(); pipe.enable_vae_slicing()
            pipe.enable_xformers_memory_efficient_attention()
        else:
            pipe.enable_attention_slicing()
    except Exception:
        pass

    PIPE_CACHE[key] = pipe
    return pipe

def apply_loras(pipe, lora_ids: List[str]):
    for rid in [x for x in lora_ids if x]:
        try:
            pipe.load_lora_weights(rid)
        except Exception as e:
            print(f"[LoRA] load failed {rid}: {e}")

def to_info(meta: dict) -> str:
    return json.dumps(meta, ensure_ascii=False, indent=2)

# ---------------- Post-process ----------------
def ensure_upscalers():
    global UPSCALE_PIPE, GFP, REALSR
    if UPSCALE_PIPE is None:
        try:
            UPSCALE_PIPE = StableDiffusionUpscalePipeline.from_pretrained(
                "stabilityai/stable-diffusion-x4-upscaler",
                torch_dtype=dtype, use_safetensors=True
            ).to(device)
        except Exception as e:
            print("[Upscaler] SD x4 not available:", e)

    if _HAS_GFP and GFP is None and GFPGANer is not None:
        try:
            GFP = GFPGANer(model_path=None, upscale=1, arch="clean", channel_multiplier=2)
        except Exception as e:
            print("[GFPGAN] init failed:", e)

    if _HAS_REALESRGAN and REALSR is None and device == "cuda":
        try:
            REALSR = RealESRGAN(torch.device("cuda"), scale=4)  # ต้องมี weights เองจึงจะทำงานจริง
        except Exception as e:
            REALSR = None
            print("[RealESRGAN] init failed:", e)

def post_process(img: Image.Image, do_up: bool, do_face: bool, do_bg: bool):
    ensure_upscalers()
    out = img

    # Upscale: RealESRGAN (ถ้ามี) > SD x4 > skip
    if do_up:
        try:
            if REALSR is not None:
                out = Image.fromarray(REALSR.predict(np.array(out)))
            elif UPSCALE_PIPE is not None:
                if device == "cuda":
                    with torch.autocast("cuda"):
                        out = UPSCALE_PIPE(prompt="", image=out).images[0]
                else:
                    out = UPSCALE_PIPE(prompt="", image=out).images[0]
        except Exception as e:
            print("[Upscale] skipped:", e)

    if do_face and _HAS_GFP and GFP is not None:
        try:
            _, _, restored = GFP.enhance(np.array(out), has_aligned=False, only_center_face=False, paste_back=True)
            out = Image.fromarray(restored)
        except Exception as e:
            print("[GFPGAN] skipped:", e)

    if do_bg and rembg_remove is not None:
        try:
            out = Image.open(io.BytesIO(rembg_remove(np.array(out))))
        except Exception as e:
            print("[rembg] skipped:", e)

    return out

# ---------------- Generators ----------------
def run_txt2img(
    model_id, model_custom, prompt, preset, negative,
    steps, cfg, width, height, scheduler_name, seed,
    lora_selected, lora_custom,
    ctrl_selected, img_canny, img_pose, img_depth, img_softedge, img_lineart,
    do_up, do_face, do_bg
):
    if not prompt or not str(prompt).strip():
        raise gr.Error("กรุณากรอก prompt")

    model = (model_custom.strip() or model_id).strip()
    if preset and preset in PRESETS: prompt = prompt + PRESETS[preset]
    if not negative or not negative.strip(): negative = NEG_DEFAULT

    # ControlNet mapping (เฉพาะภาพที่อัปโหลดจริง)
    label_to_img = {
        "Canny": img_canny, "OpenPose": img_pose, "Depth": img_depth,
        "SoftEdge": img_softedge, "Lineart": img_lineart
    }
    control_ids, cond_images = [], []
    for cid, label, note, key in CONTROLNETS:
        if label in ctrl_selected and label_to_img.get(label) is not None:
            control_ids.append(cid); cond_images.append(label_to_img[label])

    pipe = prep_pipe(model, control_ids)
    set_sched(pipe, scheduler_name)

    # LoRA
    lora_ids = [s.split(" — ")[0].strip() for s in (lora_selected or [])]
    if lora_custom and lora_custom.strip():
        lora_ids += [x.strip() for x in lora_custom.split(",") if x.strip()]
    apply_loras(pipe, lora_ids)

    width, height = int(width), int(height)
    gen = seed_gen(seed)

    if device == "cuda":
        with torch.autocast("cuda"):
            if control_ids:
                img = pipe(
                    prompt=prompt, negative_prompt=negative,
                    width=width, height=height,
                    num_inference_steps=int(steps), guidance_scale=float(cfg),
                    controlnet_conditioning_image=cond_images if len(cond_images)>1 else cond_images[0],
                    generator=gen
                ).images[0]
            else:
                img = pipe(
                    prompt=prompt, negative_prompt=negative,
                    width=width, height=height,
                    num_inference_steps=int(steps), guidance_scale=float(cfg),
                    generator=gen
                ).images[0]
    else:
        if control_ids:
            img = pipe(
                prompt=prompt, negative_prompt=negative,
                width=width, height=height,
                num_inference_steps=int(steps), guidance_scale=float(cfg),
                controlnet_conditioning_image=cond_images if len(cond_images)>1 else cond_images[0],
                generator=gen
            ).images[0]
        else:
            img = pipe(
                prompt=prompt, negative_prompt=negative,
                width=width, height=height,
                num_inference_steps=int(steps), guidance_scale=float(cfg),
                generator=gen
            ).images[0]

    img = post_process(img, do_up, do_face, do_bg)
    meta = {
        "mode":"txt2img","model":model,"loras":lora_ids,"controlnets":ctrl_selected,
        "prompt":prompt,"negative":negative,"size":f"{width}x{height}",
        "steps":steps,"cfg":cfg,"scheduler":scheduler_name,"seed":seed,
        "post":{"upscale":do_up,"face_restore":do_face,"remove_bg":do_bg}
    }
    return img, to_info(meta)

def run_img2img(
    model_id, model_custom, init_image, strength,
    prompt, preset, negative, steps, cfg, width, height, scheduler_name, seed,
    do_up, do_face, do_bg
):
    if init_image is None: raise gr.Error("โปรดอัปโหลดภาพเริ่มต้น")
    model = (model_custom.strip() or model_id).strip()
    if preset and preset in PRESETS: prompt = prompt + PRESETS[preset]
    if not negative or not negative.strip(): negative = NEG_DEFAULT

    pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(model, torch_dtype=dtype, use_safetensors=True).to(device)
    try:
        if device=="cuda": pipe.enable_xformers_memory_efficient_attention()
    except Exception: pass
    set_sched(pipe, scheduler_name); gen = seed_gen(seed)

    if device=="cuda":
        with torch.autocast("cuda"):
            img = pipe(prompt=prompt, negative_prompt=negative,
                       image=init_image, strength=float(strength),
                       num_inference_steps=int(steps), guidance_scale=float(cfg),
                       generator=gen).images[0]
    else:
        img = pipe(prompt=prompt, negative_prompt=negative,
                   image=init_image, strength=float(strength),
                   num_inference_steps=int(steps), guidance_scale=float(cfg),
                   generator=gen).images[0]

    img = post_process(img, do_up, do_face, do_bg)
    meta = {"mode":"img2img","model":model,"prompt":prompt,"neg":negative,
            "steps":steps,"cfg":cfg,"seed":seed,"strength":strength}
    return img, to_info(meta)

def expand_canvas_for_outpaint(img: Image.Image, expand_px: int, direction: str) -> Tuple[Image.Image, Image.Image]:
    w, h = img.size
    if direction == "left":
        new = Image.new("RGBA",(w+expand_px,h),(0,0,0,0)); new.paste(img,(expand_px,0))
        mask = Image.new("L",(w+expand_px,h),0); d=ImageDraw.Draw(mask); d.rectangle([0,0,expand_px,h], fill=255)
    elif direction == "right":
        new = Image.new("RGBA",(w+expand_px,h),(0,0,0,0)); new.paste(img,(0,0))
        mask = Image.new("L",(w+expand_px,h),0); d=ImageDraw.Draw(mask); d.rectangle([w,0,w+expand_px,h], fill=255)
    elif direction == "top":
        new = Image.new("RGBA",(w,h+expand_px),(0,0,0,0)); new.paste(img,(0,expand_px))
        mask = Image.new("L",(w,h+expand_px),0); d=ImageDraw.Draw(mask); d.rectangle([0,0,w,expand_px], fill=255)
    else:
        new = Image.new("RGBA",(w,h+expand_px),(0,0,0,0)); new.paste(img,(0,0))
        mask = Image.new("L",(w,h+expand_px),0); d=ImageDraw.Draw(mask); d.rectangle([0,h,w,h+expand_px], fill=255)
    return new.convert("RGB"), mask

def run_inpaint_outpaint(
    model_id, model_custom, base_image, mask_image, mode, expand_px, expand_dir,
    prompt, preset, negative, steps, cfg, width, height, scheduler_name, seed,
    strength, do_up, do_face, do_bg
):
    if base_image is None: raise gr.Error("โปรดอัปโหลดภาพฐาน")
    model = (model_custom.strip() or model_id).strip()
    if preset and preset in PRESETS: prompt = prompt + PRESETS[preset]
    if not negative or not negative.strip(): negative = NEG_DEFAULT

    pipe = StableDiffusionXLInpaintPipeline.from_pretrained(model, torch_dtype=dtype, use_safetensors=True).to(device)
    try:
        if device=="cuda": pipe.enable_xformers_memory_efficient_attention()
    except Exception: pass
    set_sched(pipe, scheduler_name); gen = seed_gen(seed)

    if mode == "Outpaint":
        base_image, mask_image = expand_canvas_for_outpaint(base_image, int(expand_px), expand_dir)

    if device=="cuda":
        with torch.autocast("cuda"):
            img = pipe(prompt=prompt, negative_prompt=negative,
                       image=base_image, mask_image=mask_image,
                       strength=float(strength),
                       num_inference_steps=int(steps), guidance_scale=float(cfg),
                       generator=gen).images[0]
    else:
        img = pipe(prompt=prompt, negative_prompt=negative,
                   image=base_image, mask_image=mask_image,
                   strength=float(strength),
                   num_inference_steps=int(steps), guidance_scale=float(cfg),
                   generator=gen).images[0]

    img = post_process(img, do_up, do_face, do_bg)
    meta = {"mode":mode,"model":model,"prompt":prompt,"steps":steps,"cfg":cfg,"seed":seed}
    return img, to_info(meta)

# ---------------- UI ----------------
def build_ui():
    with gr.Blocks(theme=gr.themes.Soft(), title="Masterpiece SDXL Studio Pro") as demo:
        gr.Markdown("# 🖼️ Masterpiece SDXL Studio Pro")
        gr.Markdown("Text2Img • Img2Img • Inpaint/Outpaint • Multi-LoRA • ControlNet • Upscale/FaceRestore/RemoveBG (optional)")

        # Common controls
        model_dd = gr.Dropdown(choices=[m[0] for m in MODELS], value=MODELS[0][0], label="Model")
        model_custom = gr.Textbox(label="Custom Model ID", placeholder="(ถ้าอยากใช้โมเดลของคุณเอง กรอกที่นี่)")

        preset = gr.Dropdown(choices=list(PRESETS.keys()), value=None, label="Style Preset (optional)")
        negative = gr.Textbox(value=NEG_DEFAULT, label="Negative Prompt")

        steps = gr.Slider(10, 60, 30, step=1, label="Steps")
        cfg = gr.Slider(1.0, 12.0, 7.0, step=0.1, label="CFG")
        width = gr.Slider(512, 1024, 832, step=64, label="Width")
        height= gr.Slider(512, 1024, 832, step=64, label="Height")
        scheduler = gr.Dropdown(list(SCHEDULERS.keys()), value="DPM-Solver (Karras)", label="Scheduler")
        seed = gr.Number(value=-1, precision=0, label="Seed (-1 = random)")

        # LoRA & ControlNet
        lora_sel = gr.CheckboxGroup(choices=[f"{rid}{lbl} ({note})" for rid,lbl,note in LORAS], label="LoRA (เลือกได้หลายตัว)")
        lora_custom = gr.Textbox(label="Custom LoRA IDs (comma separated)")

        ctrl_sel = gr.CheckboxGroup(choices=[c[1] for c in CONTROLNETS], label="ControlNet ชนิดที่ใช้")
        img_canny = gr.Image(type="pil", label="Canny")
        img_pose = gr.Image(type="pil", label="OpenPose")
        img_depth = gr.Image(type="pil", label="Depth")
        img_softedge = gr.Image(type="pil", label="SoftEdge")
        img_lineart = gr.Image(type="pil", label="Lineart")

        with gr.Row():
            do_up = gr.Checkbox(False, label="Upscale x4 (ถ้ามี)")
            do_face = gr.Checkbox(False, label="Face Restore (ถ้ามี)")
            do_bg = gr.Checkbox(False, label="Remove BG (ถ้ามี)")

        with gr.Tab("Text → Image"):
            prompt_txt = gr.Textbox(lines=3, label="Prompt")
            btn_txt = gr.Button("🚀 Generate")
            out_img_txt = gr.Image(type="pil", label="Result")
            out_meta_txt = gr.Textbox(label="Metadata", lines=10)

        with gr.Tab("Image → Image"):
            init_img = gr.Image(type="pil", label="Init Image")
            strength = gr.Slider(0.1, 1.0, 0.7, 0.05, label="Strength")
            prompt_i2i = gr.Textbox(lines=3, label="Prompt")
            btn_i2i = gr.Button("🚀 Img2Img")
            out_img_i2i = gr.Image(type="pil", label="Result")
            out_meta_i2i = gr.Textbox(label="Metadata", lines=10)

        with gr.Tab("Inpaint / Outpaint"):
            base_img = gr.Image(type="pil", label="Base Image")
            mask_img = gr.Image(type="pil", label="Mask (ขาว=แก้, ดำ=คงเดิม)")
            mode_io = gr.Radio(["Inpaint","Outpaint"], value="Inpaint", label="Mode")
            expand_px = gr.Slider(64, 1024, 256, 64, label="Outpaint pixels")
            expand_dir = gr.Radio(["left","right","top","bottom"], value="right", label="Outpaint direction")
            prompt_io = gr.Textbox(lines=3, label="Prompt")
            btn_io = gr.Button("🚀 Inpaint/Outpaint")
            out_img_io = gr.Image(type="pil", label="Result")
            out_meta_io = gr.Textbox(label="Metadata", lines=10)

        # Bindings
        btn_txt.click(
            fn=run_txt2img,
            inputs=[
                model_dd, model_custom, prompt_txt, preset, negative,
                steps, cfg, width, height, scheduler, seed,
                lora_sel, lora_custom,
                ctrl_sel, img_canny, img_pose, img_depth, img_softedge, img_lineart,
                do_up, do_face, do_bg
            ],
            outputs=[out_img_txt, out_meta_txt],
            api_name="txt2img"
        )

        btn_i2i.click(
            fn=run_img2img,
            inputs=[
                model_dd, model_custom, init_img, strength,
                prompt_i2i, preset, negative, steps, cfg, width, height, scheduler, seed,
                do_up, do_face, do_bg
            ],
            outputs=[out_img_i2i, out_meta_i2i],
            api_name="img2img"
        )

        btn_io.click(
            fn=run_inpaint_outpaint,
            inputs=[
                model_dd, model_custom, base_img, mask_img, mode_io, expand_px, expand_dir,
                prompt_io, preset, negative, steps, cfg, width, height, scheduler, seed,
                strength, do_up, do_face, do_bg
            ],
            outputs=[out_img_io, out_meta_io],
            api_name="inpaint_outpaint"
        )

        gr.Markdown("ℹ️ ถ้าโมดูลเสริมหรือบางโมเดลไม่พร้อมใช้งาน ระบบจะข้ามอย่างปลอดภัยและแจ้งเตือนใน Console")

    return demo

demo = build_ui()
demo.queue(max_size=8).launch()