Spaces:
Sleeping
Sleeping
File size: 23,560 Bytes
7252d8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
import os
import pdfplumber
import google.generativeai as genai
from dotenv import load_dotenv
import json
import gradio as gr
# --- NEW: "Dark Mode" Custom CSS ---
custom_css = """
/* A modern, clean "Dark Mode" theme */
body {
/* A dark gradient background */
background: linear-gradient(135deg, #1e1e1e 0%, #121212 100%);
font-family: 'Inter', 'Segoe UI', 'Roboto', sans-serif;
}
/* Style the main app container with a "dark glass" effect */
.gradio-container {
border: none !important;
border-radius: 12px !important;
box-shadow: 0 8px 32px 0 rgba(0, 0, 0, 0.3) !important;
background-color: rgba(30, 30, 30, 0.85) !important;
backdrop-filter: blur(10px) !important;
border: 1px solid rgba(255, 255, 255, 0.1) !important;
}
/* Style the primary 'generate' buttons (Blue stands out well on dark) */
button[data-testid="button-primary"] {
background: linear-gradient(90deg, #3A7BD5 0%, #00D2FF 100%);
color: white;
border-radius: 8px;
font-weight: bold;
box-shadow: 0 4px 14px 0 rgba(0, 118, 255, 0.39);
border: none !important;
transition: all 0.3s ease;
}
button[data-testid="button-primary"]:hover {
box-shadow: 0 6px 20px 0 rgba(0, 118, 255, 0.5);
transform: translateY(-2px);
}
/* --- FIX FOR TAB TITLES --- */
[data-testid="tab-button"] {
color: #a0a0a0 !important; /* Light grey for unselected tabs */
font-weight: 600 !important;
}
[data-testid="tab-button"].selected {
color: #ffffff !important; /* White for selected tab */
border-bottom: 2px solid #00D2FF !important; /* Accent color for the underline */
}
/* Style ALL markdown boxes (inputs and outputs) */
[data-testid="markdown"] {
background-color: #2a2a2a !important; /* Dark grey for boxes */
border-radius: 8px !important;
border: 1px solid #444 !important;
padding: 20px !important;
box-shadow: 0 2px 4px 0 rgba(0,0,0,0.1);
}
/* Force all text within markdown components to be light */
[data-testid="markdown"] p,
[data-testid="markdown"] h1,
[data-testid="markdown"] h2,
[data-testid="markdown"] h3,
[data-testid="markdown"] li,
[data-testid="markdown"] ol,
[data-testid="markdown"] ul {
color: #e0e0e0 !important; /* Light grey text */
}
/* Style the input textboxes and file upload */
[data-testid="textbox"] textarea, .gradio-file {
background-color: #2a2a2a !important;
border-radius: 8px !important;
border: 1px solid #444 !important;
color: #e0e0e0 !important; /* Make typed text light */
}
/* Style the labels for inputs (e.g., "Paste the Job Description Here") */
.gradio-form > * > label {
color: #a0a0a0 !important;
font-weight: 500 !important;
}
"""
# --- (All 6 Agents and Helper Functions) ---
# (No changes to the agent functions themselves)
def setup_api_key():
"""
Loads the Google API key from the .env file and configures the SDK.
"""
try:
load_dotenv() # Loads environment variables from .env
api_key = os.getenv("GOOGLE_API_KEY")
if not api_key:
print("Error: GOOGLE_API_KEY not found.")
print("Please create a .env file in the project root and add:")
print("GOOGLE_API_KEY=YOUR_API_KEY_HERE")
return False
genai.configure(api_key=api_key)
print("API Key configured successfully.")
return True
except Exception as e:
print(f"Error during API configuration: {e}")
return False
def extract_text_from_file(file_path):
"""
Extracts text from an uploaded file (.pdf or .txt).
"""
text = ""
try:
file_extension = os.path.splitext(file_path)[1].lower()
if file_extension == '.pdf':
print(f"Extracting text from PDF: {file_path}")
with pdfplumber.open(file_path) as pdf:
for i, page in enumerate(pdf.pages):
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
print("PDF extraction complete.")
elif file_extension == '.txt':
print(f"Extracting text from TXT: {file_path}")
with open(file_path, 'r', encoding='utf-8') as f:
text = f.read()
print("TXT extraction complete.")
else:
return "Unsupported file format. Please upload a .txt or .pdf file."
if not text.strip():
return "Error: File is empty or text could not be extracted."
return text
except Exception as e:
print(f"Error reading file {file_path}: {e}")
return f"Error reading file. It may be corrupted or in an unsupported format."
def analyze_job_description(jd_text):
"""
Agent 1: Analyzes the job description (JD).
"""
model = genai.GenerativeModel('models/gemini-flash-latest')
prompt = f"""
You are a Senior Technical Recruiter. Analyze the following job description (JD)
and extract the most critical information.
Return your analysis as a JSON object, and NOTHING ELSE. Do not add "```json".
The JSON structure must be:
{{
"job_title": "string",
"company": "string",
"key_responsibilities": ["list", "of", "strings"],
"hard_skills_keywords": ["list", "of", "tech", "skills"],
"soft_skills_keywords": ["list", "of", "interpersonal", "skills"],
"company_tone": "e.g., 'Formal & Corporate', 'Fast-paced & Startup'"
}}
Job Description Text:
---
{jd_text}
---
"""
try:
print("\nSending JD to AI Recruiter Agent...")
response = model.generate_content(prompt)
cleaned_response_text = response.text.strip().replace("```json\n", "").replace("\n```", "").strip()
print("AI analysis complete.")
jd_analysis = json.loads(cleaned_response_text)
return jd_analysis
except Exception as e:
print(f"Error during AI analysis (Recruiter Agent): {e}")
return None
def analyze_resume(resume_text, jd_analysis_json):
"""
Agent 2: Analyzes the resume against the JD's analysis.
"""
model = genai.GenerativeModel('models/gemini-flash-latest')
jd_analysis_string = json.dumps(jd_analysis_json, indent=2)
prompt = f"""
You are an expert Career Coach. You are given a user's resume and a JSON analysis
of their target job. Your task is to find all relevant experiences and identify gaps.
Return your analysis as a JSON object, and NOTHING ELSE. Do not add "```json".
The JSON structure must be:
{{
"matching_experiences": ["list of text snippets from the resume that are highly relevant"],
"quantifiable_achievements_found": ["list of bullet points from the resume that already have numbers"],
"critical_gaps": ["list of key hard skills or responsibilities from the JD that are NOT mentioned in the resume"]
}}
---
Target Job Analysis (JSON):
{jd_analysis_string}
---
User's Resume Text:
{resume_text}
---
"""
try:
print("\nSending Resume and JD to AI Career Coach Agent...")
response = model.generate_content(prompt)
cleaned_response_text = response.text.strip().replace("```json\n", "").replace("\n```", "").strip()
print("AI career coach analysis complete.")
resume_analysis = json.loads(cleaned_response_text)
return resume_analysis
except Exception as e:
print(f"Error during AI analysis (Career Coach Agent): {e}")
return None
def generate_tailored_resume(resume_text, jd_analysis_json, resume_analysis_json):
"""
Agent 3: The "Master Rewrite Agent."
"""
model = genai.GenerativeModel('models/gemini-flash-latest')
jd_analysis_string = json.dumps(jd_analysis_json, indent=2)
resume_analysis_string = json.dumps(resume_analysis_json, indent=2)
prompt = f"""
You are a world-class Professional Resume Writer. Your task is to rewrite the "Experience"
section of the resume to align *perfectly* with a target job.
**CRITICAL RULES:**
1. **Do NOT invent new experiences.** You must only rewrite and re-phrase the
*existing* experience from the original resume.
2. Integrate the `hard_skills_keywords` from the Job Analysis naturally into the bullet points.
3. Rewrite weak bullet points to use the **STAR method** (Situation, Task, Action, Result)
and quantify achievements where possible.
4. Reflect the `company_tone` from the Job Analysis in your writing style.
5. **Output *only* the new, fully rewritten 'Experience' section** in clean
Markdown format. Do not add *any* other text, headings, or explanations.
---
[Target Job Analysis (JSON)]
{jd_analysis_string}
---
[Career Coach's Gap Analysis (JSON)]
{resume_analysis_string}
---
[Original Resume Text]
{resume_text}
---
Provide the rewritten "Experience" section in Markdown:
"""
try:
print("\nSending all data to Master Rewrite Agent...")
response = model.generate_content(prompt)
print("Master rewrite complete.")
return response.text.strip()
except Exception as e:
print(f"Error during AI analysis (Rewrite Agent): {e}")
return None
def generate_ats_report(tailored_resume_text, jd_analysis_json):
"""
Agent 4: The "ATS Scorecard Agent."
"""
model = genai.GenerativeModel('models/gemini-flash-latest')
jd_analysis_string = json.dumps(jd_analysis_json, indent=2)
prompt = f"""
You are an ATS (Applicant Tracking System) scanner. Your task is to generate a
'Tailor Report' in Markdown format that scores the "New Resume Section" against
the "Target Job Analysis."
**Output Format (Must be Markdown):**
### Your 'Tailor' Report
**ATS Match Score:** 85%
**Keywords Hit:**
- Python
- Django
**Keywords Missing:**
- Flask
- Data Analytics
**Suggestion:** Great job! Consider adding a project or skill that mentions 'Flask'.
---
[Target Job Analysis (JSON)]
{jd_analysis_string}
---
[New Resume Section]
{tailored_resume_text}
---
Now, generate the 'Tailor Report' in Markdown, and NOTHING ELSE.
"""
try:
print("\nSending data to ATS Scorecard Agent...")
response = model.generate_content(prompt)
print("ATS report complete.")
return response.text.strip()
except Exception as e:
print(f"Error during AI analysis (ATS Agent): {e}")
return None
def generate_cover_letter(resume_text, jd_analysis_json, resume_analysis_json):
"""
Agent 5: The "Cover Letter Agent."
"""
model = genai.GenerativeModel('models/gemini-flash-latest')
jd_analysis_string = json.dumps(jd_analysis_json, indent=2)
resume_analysis_string = json.dumps(resume_analysis_json, indent=2)
prompt = f"""
You are a world-class Professional Resume Writer and Career Coach.
Your task is to write a compelling, professional cover letter for a job applicant
based on their resume and a target job description.
**CRITICAL RULES:**
1. **Tone:** The tone must be professional, confident, and aligned with the `company_tone`
from the Job Analysis.
2. **Structure:** Follow a standard cover letter format (Salutation, Introduction, Body, Conclusion, Sign-off).
3. **Body Paragraphs:**
* In the first body paragraph, highlight the applicant's skills that
match the `hard_skills_keywords` and `key_responsibilities`.
* In the second body paragraph, use the `matching_experiences` to provide a
specific example or story that proves their qualification.
* Address any `critical_gaps` by framing them positively, e.g., "While my
direct experience with 'Flask' is developing, my proven ability to master
'Django' and other Python frameworks demonstrates my capacity to learn quickly..."
4. **Do NOT invent new experiences.** You must only use information from the
"Original Resume Text" and the analyses.
5. **Output *only* the cover letter** in clean Markdown format. Do not add
any other text, headings, or explanations.
---
[Target Job Analysis (JSON)]
{jd_analysis_string}
---
[Career Coach's Gap Analysis (JSON)]
{resume_analysis_string}
---
[Original Resume Text]
{resume_text}
---
Now, provide the complete, professional cover letter in Markdown:
"""
try:
print("\nSending all data to Cover Letter Agent...")
response = model.generate_content(prompt)
print("Cover letter generation complete.")
return response.text.strip()
except Exception as e:
print(f"Error during AI analysis (Cover Letter Agent): {e}")
return None
def generate_interview_prep(jd_analysis_json, resume_analysis_json):
"""
Agent 6: The "Hiring Manager Agent."
Generates custom interview questions based on the job and the candidate's gaps.
"""
model = genai.GenerativeModel('models/gemini-flash-latest')
jd_analysis_string = json.dumps(jd_analysis_json, indent=2)
resume_analysis_string = json.dumps(resume_analysis_json, indent=2)
prompt = f"""
You are a senior Hiring Manager preparing to interview a candidate. You are given
an analysis of the job and an analysis of the candidate's resume.
Your task is to generate a custom "Interview Prep Sheet" in Markdown.
**Instructions:**
1. Create 2-3 **Behavioral Questions** based on the `soft_skills_keywords`.
2. Create 2-3 **Technical Questions** based on the `hard_skills_keywords`.
3. Create 1-2 **Gap-Based Questions** based on the `critical_gaps`. These are the
most important questions to ask. (e.g., "I see you have experience in X, but
this role requires Y. Can you tell me how you'd bridge that gap?")
4. For *each* question, provide a brief **"Hint for a strong answer"** that tells
the user what the interviewer is *really* looking for.
**Output *only* the prep sheet** in clean Markdown.
---
[Target Job Analysis (JSON)]
{jd_analysis_string}
---
[Career Coach's Gap Analysis (JSON)]
{resume_analysis_string}
---
Now, provide the complete "Interview Prep Sheet" in Markdown:
"""
try:
print("\nSending all data to Hiring Manager Agent...")
response = model.generate_content(prompt)
print("Interview prep generation complete.")
return response.text.strip()
except Exception as e:
print(f"Error during AI analysis (Hiring Manager Agent): {e}")
return None
# --- (Pipeline 1: Resume Tailor) ---
def tailor_resume_pipeline(resume_file, job_description):
"""
Main controller for the "Resume Tailor" tab.
Runs the full 4-agent pipeline (Agents 1, 2, 3, 4).
"""
if not setup_api_key():
return "Error: API Key is not configured. Please check your .env file.", ""
print("--- RESUME TAILOR PIPELINE INITIATED ---")
print("Step 1: Extracting text...")
if resume_file is None:
return "Error: Please upload a resume file.", ""
resume_text = extract_text_from_file(resume_file.name)
if "Error" in resume_text or not resume_text:
return f"Could not process the resume file. Error: {resume_text}", ""
if not job_description:
return "Error: Please paste the job description.", ""
print("Step 2: Analyzing job description...")
jd_data = analyze_job_description(job_description)
if not jd_data:
return "The AI could not analyze the job description. Please try again.", ""
print("Step 3: Analyzing resume...")
resume_data = analyze_resume(resume_text, jd_data)
if not resume_data:
return "The AI could not analyze the resume. Please try again.", ""
print("Step 4: Generating tailored resume...")
tailored_resume = generate_tailored_resume(resume_text, jd_data, resume_data)
if not tailored_resume:
return "The AI failed to generate the final resume. Please try again.", ""
print("Step 5: Generating ATS report...")
ats_report = generate_ats_report(tailored_resume, jd_data)
if not ats_report:
ats_report = "Error: Could not generate ATS report."
print("Resume pipeline complete! Returning 2 outputs.")
return tailored_resume, ats_report
# --- (Pipeline 2: Cover Letter) ---
def generate_cover_letter_pipeline(resume_file, job_description):
"""
Main controller for the "Cover Letter" tab.
Runs a 3-agent pipeline (Agents 1, 2, 5).
"""
if not setup_api_key():
return "Error: API Key is not configured. Please check your .env file."
print("--- COVER LETTER PIPELINE INITIATED ---")
print("Step 1: Extracting text...")
if resume_file is None:
return "Error: Please upload a resume file."
resume_text = extract_text_from_file(resume_file.name)
if "Error" in resume_text or not resume_text:
return f"Could not process the resume file. Error: {resume_text}"
if not job_description:
return "Error: Please paste the job description."
print("Step 2: Analyzing job description...")
jd_data = analyze_job_description(job_description)
if not jd_data:
return "The AI could not analyze the job description. Please try again."
print("Step 3: Analyzing resume...")
resume_data = analyze_resume(resume_text, jd_data)
if not resume_data:
return "The AI could not analyze the resume. Please try again."
print("Step 4: Generating cover letter...")
cover_letter = generate_cover_letter(resume_text, jd_data, resume_data)
if not cover_letter:
return "The AI failed to generate the cover letter. Please try again."
print("Cover letter pipeline complete! Returning 1 output.")
return cover_letter
# --- (Pipeline 3: Interview Prep) ---
def generate_interview_prep_pipeline(resume_file, job_description):
"""
Main controller for the "Interview Prep" tab.
Runs a 3-agent pipeline (Agents 1, 2, 6).
"""
if not setup_api_key():
return "Error: API Key is not configured. Please check your .env file."
print("--- INTERVIEW PREP PIPELINE INITIATED ---")
print("Step 1: Extracting text...")
if resume_file is None:
return "Error: Please upload a resume file."
resume_text = extract_text_from_file(resume_file.name)
if "Error" in resume_text or not resume_text:
return f"Could not process the resume file. Error: {resume_text}"
if not job_description:
return "Error: Please paste the job description."
print("Step 2: Analyzing job description...")
jd_data = analyze_job_description(job_description)
if not jd_data:
return "The AI could not analyze the job description. Please try again."
print("Step 3:Analyzing resume...")
resume_data = analyze_resume(resume_text, jd_data)
if not resume_data:
return "The AI could not analyze the resume. Please. Please try again."
print("Step 4: Generating interview prep...")
interview_prep = generate_interview_prep(jd_data, resume_data) # Note: Doesn't need resume_text
if not interview_prep:
return "The AI failed to generate the interview prep. Please try again."
print("Interview prep pipeline complete! Returning 1 output.")
return interview_prep
# --- FINAL Gradio Web Interface (with 3 Tabs + Custom UI) ---
# We use gr.themes.Base() as our starting point and apply our CSS
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as demo:
gr.Markdown(
"""
<div style="text-align: center; padding: 20px 0;">
<h1 style="font-size: 2.5em; font-weight: 700; color: #ffffff;">
🤖 AI-Powered Job Application Suite
</h1>
<p style="font-size: 1.2em; color: #a0a0a0;">
From Resume to Interview, get the AI-powered edge you need.
</p>
</div>
"""
)
with gr.Tabs():
# --- Tab 1: Resume Tailor ---
with gr.TabItem("1. Resume Tailor"):
gr.Markdown("Upload your resume and paste a job description to get a tailored 'Experience' section and an ATS report.")
with gr.Row():
with gr.Column(scale=1):
resume_file_input_1 = gr.File(label="Upload Your Master Resume (.pdf or .txt)")
job_description_input_1 = gr.Textbox(lines=15, label="Paste the Job Description Here")
submit_button_1 = gr.Button("Tailor My Resume!", variant="primary")
with gr.Column(scale=2):
tailored_resume_output = gr.Markdown(label="Your New, Tailored Resume Section")
ats_report_output = gr.Markdown(label="Your 'Tailor' Report")
submit_button_1.click(
fn=tailor_resume_pipeline,
inputs=[resume_file_input_1, job_description_input_1],
outputs=[tailored_resume_output, ats_report_output]
)
# --- Tab 2: Cover Letter Generator ---
with gr.TabItem("2. Cover Letter Generator"):
gr.Markdown("Upload your resume and paste a job description to generate a custom cover letter in seconds.")
with gr.Row():
with gr.Column(scale=1):
resume_file_input_2 = gr.File(label="Upload Your Master Resume (.pdf or .txt)")
job_description_input_2 = gr.Textbox(lines=15, label="Paste the Job Description Here")
submit_button_2 = gr.Button("Generate My Cover Letter!", variant="primary")
with gr.Column(scale=2):
cover_letter_output = gr.Markdown(label="Your New, Generated Cover Letter")
submit_button_2.click(
fn=generate_cover_letter_pipeline,
inputs=[resume_file_input_2, job_description_input_2],
outputs=[cover_letter_output]
)
# --- Tab 3: Interview Prep ---
with gr.TabItem("3. Interview Prep"):
gr.Markdown("Upload your resume and paste a job description to get a custom list of interview questions and answer hints.")
with gr.Row():
with gr.Column(scale=1):
resume_file_input_3 = gr.File(label="Upload Your Master Resume (.pdf or .txt)")
job_description_input_3 = gr.Textbox(lines=15, label="Paste the Job Description Here")
submit_button_3 = gr.Button("Generate My Prep Sheet!", variant="primary")
with gr.Column(scale=2):
interview_prep_output = gr.Markdown(label="Your Custom Interview Prep Sheet")
submit_button_3.click(
fn=generate_interview_prep_pipeline,
inputs=[resume_file_input_3, job_description_input_3],
outputs=[interview_prep_output]
)
print("Launching the AI Job Application Suite (v6.0 DARK MODE)...")
# Added share=True so you can easily open it on your phone or share it
demo.launch(share=True)
|