Spaces:
Running
Running
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| # Load model and tokenizer | |
| model_name = "alexneakameni/language_detection" | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name).to(device) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # Get label mapping | |
| id2label = model.config.id2label | |
| def predict_language(text, top_k=5): | |
| """Predicts the top-k languages for the given text.""" | |
| inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512).to(device) | |
| with torch.no_grad(): | |
| logits = model(**inputs).logits | |
| probs = torch.nn.functional.softmax(logits, dim=-1).squeeze() | |
| top_probs, top_indices = torch.topk(probs, top_k) | |
| results = [f"{id2label[idx.item()]}: {prob:.4f}" for prob, idx in zip(top_probs, top_indices)] | |
| return "\n".join(results) | |
| # Create Gradio interface | |
| demo = gr.Interface( | |
| fn=predict_language, | |
| inputs=[ | |
| gr.Textbox(label="Enter text", placeholder="Type a sentence here..."), | |
| gr.Slider(1, 10, value=5, step=1, label="Top-k Languages") | |
| ], | |
| outputs=gr.Textbox(label="Predicted Languages"), | |
| title="🌍 Language Detection", | |
| description="Detects the language of a given text using a fine-tuned BERT model. Returns the top-k most probable languages.", | |
| examples=[ | |
| ["Hello, how are you?", 5], | |
| ["Bonjour, comment ça va?", 5], | |
| ["Hola, ¿cómo estás?", 5], | |
| ["Hallo, wie geht es dir?", 5], | |
| ["Привет, как дела?", 5] | |
| ] | |
| ) | |
| demo.launch() | |