Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +141 -0
- requirements.txt +8 -0
- yolov8n-face.pt +3 -0
app.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import time
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
from ultralytics import YOLO
|
| 7 |
+
from PIL import Image as PILImage
|
| 8 |
+
from keras_facenet import FaceNet
|
| 9 |
+
from transformers import pipeline
|
| 10 |
+
import gradio as gr
|
| 11 |
+
from datetime import datetime, timedelta
|
| 12 |
+
import gc
|
| 13 |
+
|
| 14 |
+
# -----------------------------
|
| 15 |
+
# Device Setup
|
| 16 |
+
# -----------------------------
|
| 17 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
print(f"Using device: {DEVICE}")
|
| 19 |
+
|
| 20 |
+
# -----------------------------
|
| 21 |
+
# Load YOLOv8 Face Model
|
| 22 |
+
# -----------------------------
|
| 23 |
+
MODEL_PATH = "yolov8n-face.pt" # put this file in your Space repository
|
| 24 |
+
face_model = YOLO(MODEL_PATH).to(DEVICE)
|
| 25 |
+
|
| 26 |
+
# -----------------------------
|
| 27 |
+
# Load FaceNet Embedder
|
| 28 |
+
# -----------------------------
|
| 29 |
+
embedder = FaceNet() # CPU mode
|
| 30 |
+
|
| 31 |
+
# -----------------------------
|
| 32 |
+
# Load HuggingFace Age & Gender Models
|
| 33 |
+
# -----------------------------
|
| 34 |
+
age_model = pipeline(
|
| 35 |
+
"image-classification",
|
| 36 |
+
model="prithivMLmods/Age-Classification-SigLIP2",
|
| 37 |
+
device=-1
|
| 38 |
+
)
|
| 39 |
+
gender_model = pipeline(
|
| 40 |
+
"image-classification",
|
| 41 |
+
model="dima806/fairface_gender_image_detection",
|
| 42 |
+
device=-1
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# -----------------------------
|
| 46 |
+
# Face DB
|
| 47 |
+
# -----------------------------
|
| 48 |
+
FACE_DB = []
|
| 49 |
+
NEXT_ID = 1
|
| 50 |
+
|
| 51 |
+
def clean_gpu():
|
| 52 |
+
if torch.cuda.is_available():
|
| 53 |
+
torch.cuda.empty_cache()
|
| 54 |
+
gc.collect()
|
| 55 |
+
|
| 56 |
+
def cosine_similarity(a, b):
|
| 57 |
+
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
| 58 |
+
|
| 59 |
+
# -----------------------------
|
| 60 |
+
# Main Inference Function
|
| 61 |
+
# -----------------------------
|
| 62 |
+
def process_image(image):
|
| 63 |
+
global NEXT_ID, FACE_DB
|
| 64 |
+
start_time = time.time()
|
| 65 |
+
|
| 66 |
+
rgb_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 67 |
+
|
| 68 |
+
# Detect faces
|
| 69 |
+
results = face_model(rgb_img, verbose=False)
|
| 70 |
+
boxes = results[0].boxes.xyxy.cpu().numpy().astype(int)
|
| 71 |
+
|
| 72 |
+
now = datetime.now()
|
| 73 |
+
FACE_DB = [f for f in FACE_DB if now - f["time"] <= timedelta(hours=1)]
|
| 74 |
+
|
| 75 |
+
faces = []
|
| 76 |
+
for (x1, y1, x2, y2) in boxes:
|
| 77 |
+
face_crop = rgb_img[y1:y2, x1:x2]
|
| 78 |
+
if face_crop.size == 0:
|
| 79 |
+
continue
|
| 80 |
+
|
| 81 |
+
face_embedding = embedder.embeddings([face_crop])[0]
|
| 82 |
+
|
| 83 |
+
assigned_id = None
|
| 84 |
+
age_pred, gender_pred = "unknown", "unknown"
|
| 85 |
+
|
| 86 |
+
# Compare with DB
|
| 87 |
+
if FACE_DB:
|
| 88 |
+
similarities = [cosine_similarity(face_embedding, entry["embedding"]) for entry in FACE_DB]
|
| 89 |
+
best_match_index = int(np.argmax(similarities))
|
| 90 |
+
best_score = similarities[best_match_index]
|
| 91 |
+
|
| 92 |
+
if best_score > 0.6:
|
| 93 |
+
assigned_id = FACE_DB[best_match_index]["id"]
|
| 94 |
+
FACE_DB[best_match_index]["time"] = now
|
| 95 |
+
FACE_DB[best_match_index]["seen_count"] += 1
|
| 96 |
+
age_pred = FACE_DB[best_match_index]["age"]
|
| 97 |
+
gender_pred = FACE_DB[best_match_index]["gender"]
|
| 98 |
+
|
| 99 |
+
if assigned_id is None:
|
| 100 |
+
assigned_id = NEXT_ID
|
| 101 |
+
face_pil = PILImage.fromarray(face_crop)
|
| 102 |
+
try:
|
| 103 |
+
age_pred = age_model(face_pil)[0]["label"]
|
| 104 |
+
gender_pred = gender_model(face_pil)[0]["label"]
|
| 105 |
+
except Exception:
|
| 106 |
+
age_pred, gender_pred = "unknown", "unknown"
|
| 107 |
+
|
| 108 |
+
FACE_DB.append({
|
| 109 |
+
"id": assigned_id,
|
| 110 |
+
"embedding": face_embedding,
|
| 111 |
+
"time": now,
|
| 112 |
+
"seen_count": 1,
|
| 113 |
+
"age": age_pred,
|
| 114 |
+
"gender": gender_pred
|
| 115 |
+
})
|
| 116 |
+
NEXT_ID += 1
|
| 117 |
+
|
| 118 |
+
faces.append({
|
| 119 |
+
"id": assigned_id,
|
| 120 |
+
"age": age_pred,
|
| 121 |
+
"gender": gender_pred,
|
| 122 |
+
"box": [int(x1), int(y1), int(x2), int(y2)]
|
| 123 |
+
})
|
| 124 |
+
|
| 125 |
+
total_time = round(time.time() - start_time, 3)
|
| 126 |
+
clean_gpu()
|
| 127 |
+
|
| 128 |
+
return {"faces": faces, "processing_time_sec": total_time}
|
| 129 |
+
|
| 130 |
+
# -----------------------------
|
| 131 |
+
# Gradio UI
|
| 132 |
+
# -----------------------------
|
| 133 |
+
iface = gr.Interface(
|
| 134 |
+
fn=process_image,
|
| 135 |
+
inputs=gr.Image(type="numpy"),
|
| 136 |
+
outputs="json",
|
| 137 |
+
title="Face Detection + Age/Gender"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
if __name__ == "__main__":
|
| 141 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
opencv-python-headless
|
| 4 |
+
ultralytics
|
| 5 |
+
Pillow
|
| 6 |
+
keras-facenet
|
| 7 |
+
transformers
|
| 8 |
+
gradio
|
yolov8n-face.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d17b38523a994b13ee604b67f02791ca0f43b9f446a32fd7bc44e17c56ead077
|
| 3 |
+
size 6250099
|